亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? kernelestimator.java

?? 數據挖掘estimators算法
?? JAVA
字號:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    KernelEstimator.java *    Copyright (C) 1999 Len Trigg * */package weka.estimators;import java.util.*;import weka.core.*;/**  * Simple kernel density estimator. Uses one gaussian kernel per observed * data value. * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.4 $ */public class KernelEstimator implements Estimator {  /** Vector containing all of the values seen */  private double [] m_Values;  /** Vector containing the associated weights */  private double [] m_Weights;  /** Number of values stored in m_Weights and m_Values so far */  private int m_NumValues;  /** The sum of the weights so far */  private double m_SumOfWeights;  /** The standard deviation */  private double m_StandardDev;  /** The precision of data values */  private double m_Precision;  /** Whether we can optimise the kernel summation */  private boolean m_AllWeightsOne;  /** Maximum percentage error permitted in probability calculations */  private static double MAX_ERROR = 0.01;  /**   * Execute a binary search to locate the nearest data value   *   * @param the data value to locate   * @return the index of the nearest data value   */  private int findNearestValue(double key) {    int low = 0;     int high = m_NumValues;    int middle = 0;    while (low < high) {      middle = (low + high) / 2;      double current = m_Values[middle];      if (current == key) {	return middle;      }      if (current > key) {	high = middle;      } else if (current < key) {	low = middle + 1;      }    }    return low;  }  /**   * Round a data value using the defined precision for this estimator   *   * @param data the value to round   * @return the rounded data value   */  private double round(double data) {    return Math.rint(data / m_Precision) * m_Precision;  }    // ===============  // Public methods.  // ===============    /**   * Constructor that takes a precision argument.   *   * @param precision the  precision to which numeric values are given. For   * example, if the precision is stated to be 0.1, the values in the   * interval (0.25,0.35] are all treated as 0.3.    */  public KernelEstimator(double precision) {    m_Values = new double [50];    m_Weights = new double [50];    m_NumValues = 0;    m_SumOfWeights = 0;    m_AllWeightsOne = true;    m_Precision = precision;    //    m_StandardDev = 1e10 * m_Precision; // Set the standard deviation initially very wide    m_StandardDev = m_Precision / (2 * 3);  }  /**   * Add a new data value to the current estimator.   *   * @param data the new data value    * @param weight the weight assigned to the data value    */  public void addValue(double data, double weight) {    if (weight == 0) {      return;    }    data = round(data);    int insertIndex = findNearestValue(data);    if ((m_NumValues <= insertIndex) || (m_Values[insertIndex] != data)) {      if (m_NumValues < m_Values.length) {	int left = m_NumValues - insertIndex; 	System.arraycopy(m_Values, insertIndex, 			 m_Values, insertIndex + 1, left);	System.arraycopy(m_Weights, insertIndex, 			 m_Weights, insertIndex + 1, left);	m_Values[insertIndex] = data;	m_Weights[insertIndex] = weight;	m_NumValues++;      } else {	double [] newValues = new double [m_Values.length * 2];	double [] newWeights = new double [m_Values.length * 2];	int left = m_NumValues - insertIndex; 	System.arraycopy(m_Values, 0, newValues, 0, insertIndex);	System.arraycopy(m_Weights, 0, newWeights, 0, insertIndex);	newValues[insertIndex] = data;	newWeights[insertIndex] = weight;	System.arraycopy(m_Values, insertIndex, 			 newValues, insertIndex + 1, left);	System.arraycopy(m_Weights, insertIndex, 			 newWeights, insertIndex + 1, left);	m_NumValues++;	m_Values = newValues;	m_Weights = newWeights;      }      if (weight != 1) {	m_AllWeightsOne = false;      }    } else {      m_Weights[insertIndex] += weight;      m_AllWeightsOne = false;          }    m_SumOfWeights += weight;    double range = m_Values[m_NumValues - 1] - m_Values[0];    if (range > 0) {      m_StandardDev = Math.max(range / Math.sqrt(m_SumOfWeights), 			       // allow at most 3 sds within one interval			       m_Precision / (2 * 3));    }  }  /**   * Get a probability estimate for a value.   *   * @param data the value to estimate the probability of   * @return the estimated probability of the supplied value   */  public double getProbability(double data) {    double delta = 0, sum = 0, currentProb = 0;    double zLower = 0, zUpper = 0;    if (m_NumValues == 0) {      zLower = (data - (m_Precision / 2)) / m_StandardDev;      zUpper = (data + (m_Precision / 2)) / m_StandardDev;      return (Statistics.normalProbability(zUpper)	      - Statistics.normalProbability(zLower));    }    double weightSum = 0;    int start = findNearestValue(data);    for (int i = start; i < m_NumValues; i++) {      delta = m_Values[i] - data;      zLower = (delta - (m_Precision / 2)) / m_StandardDev;      zUpper = (delta + (m_Precision / 2)) / m_StandardDev;      currentProb = (Statistics.normalProbability(zUpper)		     - Statistics.normalProbability(zLower));      sum += currentProb * m_Weights[i];      /*      System.out.print("zL" + (i + 1) + ": " + zLower + " ");      System.out.print("zU" + (i + 1) + ": " + zUpper + " ");      System.out.print("P" + (i + 1) + ": " + currentProb + " ");      System.out.println("total: " + (currentProb * m_Weights[i]) + " ");      */      weightSum += m_Weights[i];      if (currentProb * (m_SumOfWeights - weightSum) < sum * MAX_ERROR) {	break;      }    }    for (int i = start - 1; i >= 0; i--) {      delta = m_Values[i] - data;      zLower = (delta - (m_Precision / 2)) / m_StandardDev;      zUpper = (delta + (m_Precision / 2)) / m_StandardDev;      currentProb = (Statistics.normalProbability(zUpper)		     - Statistics.normalProbability(zLower));      sum += currentProb * m_Weights[i];      weightSum += m_Weights[i];      if (currentProb * (m_SumOfWeights - weightSum) < sum * MAX_ERROR) {	break;      }    }    return sum / m_SumOfWeights;  }  /** Display a representation of this estimator */  public String toString() {    String result = m_NumValues + " Normal Kernels. \nStandardDev = "       + Utils.doubleToString(m_StandardDev,6,4)      + " Precision = " + m_Precision;    if (m_NumValues == 0) {      result += "  \nMean = 0";    } else {      result += "  \nMeans =";      for (int i = 0; i < m_NumValues; i++) {	result += " " + m_Values[i];      }      if (!m_AllWeightsOne) {	result += "\nWeights = ";	for (int i = 0; i < m_NumValues; i++) {	  result += " " + m_Weights[i];	}      }    }    return result + "\n";  }  /**   * Main method for testing this class.   *   * @param argv should contain a sequence of numeric values   */  public static void main(String [] argv) {    try {      if (argv.length < 2) {	System.out.println("Please specify a set of instances.");	return;      }      KernelEstimator newEst = new KernelEstimator(0.01);      for (int i = 0; i < argv.length - 3; i += 2) {	newEst.addValue(Double.valueOf(argv[i]).doubleValue(), 			Double.valueOf(argv[i + 1]).doubleValue());      }      System.out.println(newEst);      double start = Double.valueOf(argv[argv.length - 2]).doubleValue();      double finish = Double.valueOf(argv[argv.length - 1]).doubleValue();      for (double current = start; current < finish; 	  current += (finish - start) / 50) {	System.out.println("Data: " + current + " " 			   + newEst.getProbability(current));      }    } catch (Exception e) {      System.out.println(e.getMessage());    }  }}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
石原莉奈在线亚洲二区| 精品国产乱码久久久久久图片| 狠狠网亚洲精品| 秋霞av亚洲一区二区三| 亚洲地区一二三色| 亚洲一区二区三区影院| 一区二区免费视频| 亚洲综合激情网| 午夜精品视频一区| 蜜臀av一级做a爰片久久| 日本aⅴ精品一区二区三区 | 国产欧美久久久精品影院| 精品国产免费一区二区三区四区 | 久久久亚洲精华液精华液精华液 | 亚洲视频图片小说| 亚洲中国最大av网站| 亚洲国产sm捆绑调教视频 | 国模套图日韩精品一区二区| 麻豆国产精品视频| 国产成人精品www牛牛影视| 粉嫩aⅴ一区二区三区四区五区| 成人综合婷婷国产精品久久免费| 成人av电影免费在线播放| 91美女片黄在线| 欧美一区二区三区白人| 国产色产综合色产在线视频| 亚洲免费观看高清| 蜜桃av一区二区| 99精品欧美一区二区蜜桃免费| 欧美亚洲动漫精品| 久久嫩草精品久久久精品| 亚洲欧美一区二区三区极速播放| 偷窥国产亚洲免费视频| 狠狠色丁香久久婷婷综| 色一区在线观看| 欧美成人精品3d动漫h| 中文字幕一区在线| 七七婷婷婷婷精品国产| 99久久久久久99| 精品欧美黑人一区二区三区| 最好看的中文字幕久久| 日韩激情在线观看| av一区二区三区四区| 日韩免费高清av| 亚洲桃色在线一区| 国产麻豆午夜三级精品| 欧美性猛交xxxx黑人交| 国产日韩欧美精品电影三级在线| 亚洲国产美女搞黄色| 成人免费黄色在线| 欧美一区二区三区电影| 亚洲线精品一区二区三区| 成人美女视频在线看| 欧美va亚洲va| 午夜一区二区三区视频| 99久久综合狠狠综合久久| 欧美www视频| 五月婷婷综合网| 欧美综合色免费| 日韩美女视频19| 丁香啪啪综合成人亚洲小说| 日韩欧美国产精品一区| 亚洲成人精品一区二区| 色狠狠色噜噜噜综合网| 天天综合网 天天综合色| 日本精品一区二区三区高清| 国产清纯在线一区二区www| 国产在线视频一区二区| 精品欧美乱码久久久久久1区2区| 亚洲综合视频网| 在线观看中文字幕不卡| 一区二区三区91| 在线视频欧美精品| 亚洲综合一区二区精品导航| 欧美视频日韩视频在线观看| 亚洲精品视频免费看| 色婷婷亚洲综合| 亚洲小说春色综合另类电影| 欧美在线高清视频| 亚洲第一激情av| 日韩欧美一卡二卡| 国产乱国产乱300精品| 久久久综合精品| 不卡区在线中文字幕| 最新不卡av在线| 欧美日韩国产高清一区二区三区| 亚洲一区二区三区四区五区黄| 欧美三级蜜桃2在线观看| 日精品一区二区三区| 777xxx欧美| 国产成人精品亚洲午夜麻豆| 国产精品免费看片| 在线视频一区二区三区| 秋霞电影一区二区| 国产目拍亚洲精品99久久精品| 国产91在线看| 亚洲午夜久久久久久久久久久| 欧美精品久久天天躁| 久久国产剧场电影| 国产精品久久久久久久裸模| 色拍拍在线精品视频8848| 亚洲va欧美va国产va天堂影院| 欧美sm极限捆绑bd| 色一情一乱一乱一91av| 日韩在线一区二区三区| 亚洲一区在线视频| 日韩欧美一区二区在线视频| 国产精品66部| 亚洲午夜免费视频| 欧美韩国日本一区| 欧美日韩免费一区二区三区视频| 久久精品久久综合| 一区二区日韩av| 国产日韩精品一区二区三区| 欧美综合色免费| 国产电影一区二区三区| 亚洲第一综合色| 亚洲天堂福利av| 久久先锋资源网| 欧美亚洲一区二区三区四区| 国产一区不卡视频| 午夜日韩在线观看| 成人欧美一区二区三区在线播放| 日韩免费视频一区| 欧美日韩国产在线观看| 不卡视频免费播放| 国产美女精品人人做人人爽| 亚洲国产欧美一区二区三区丁香婷| 久久精品水蜜桃av综合天堂| 欧美美女网站色| 91捆绑美女网站| 91精品婷婷国产综合久久| kk眼镜猥琐国模调教系列一区二区| 日韩精品免费专区| 亚洲国产一二三| 亚洲欧洲国产日韩| 欧美国产精品劲爆| 久久婷婷综合激情| 日韩欧美高清在线| 日韩一级片在线观看| 欧美精品免费视频| 欧美人伦禁忌dvd放荡欲情| 91麻豆福利精品推荐| 成人激情视频网站| 盗摄精品av一区二区三区| 激情小说亚洲一区| 精品中文字幕一区二区| 秋霞电影一区二区| 久国产精品韩国三级视频| 免费不卡在线观看| 免费观看一级欧美片| 日本欧美加勒比视频| 日本欧美在线观看| 日本特黄久久久高潮| 日本欧美一区二区三区乱码| 免费欧美高清视频| 麻豆91免费观看| 国产在线精品一区二区不卡了| 精品中文av资源站在线观看| 久久99久国产精品黄毛片色诱| 蜜臀久久99精品久久久久宅男| 日本不卡一二三区黄网| 蜜桃av一区二区三区| 精品亚洲国产成人av制服丝袜| 精东粉嫩av免费一区二区三区| 黑人精品欧美一区二区蜜桃 | 欧美精品一区二区久久婷婷| 精品国产一区二区三区av性色| www亚洲一区| 国产精品久久久久影院色老大| 国产精品电影院| 一区二区三区欧美| 亚洲成年人网站在线观看| 免费观看在线综合| 波多野结衣精品在线| 色综合天天综合网天天狠天天| 欧美乱妇15p| 国产亚洲自拍一区| 亚洲另类色综合网站| 午夜精品福利视频网站 | 国产精品高潮呻吟| 亚洲一区二区三区激情| 久久精品99国产精品日本| 国产69精品一区二区亚洲孕妇 | 日韩成人免费电影| 国产精品18久久久久久vr| 91丨porny丨首页| 在线综合视频播放| 中文字幕中文乱码欧美一区二区| 亚洲综合在线视频| 国产黑丝在线一区二区三区| 色悠久久久久综合欧美99| 26uuu国产日韩综合| 亚洲一区二区三区小说| 国产福利一区二区三区视频| 欧美亚洲国产一区在线观看网站 | 欧美一级视频精品观看| 中文字幕欧美一区| 国产一区二区网址| 欧美日韩五月天|