亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mohuzishiyingkongzhi.txt

?? FUzzy PID COntrol!!!FUzzy PID COntrol
?? TXT
?? 第 1 頁 / 共 2 頁
字號:
clear		% Clear all variables in memory
eold=0; 	% Intial condition used to calculate c
rold=0; 	% Intial condition used to calculate r
yeold=0; 	% Intial condition used to calculate yc
ymold=0; 	% Initial condition for the first order reference model

% Next, initialize parameters for the fuzzy controller

nume=11; 	% Number of input membership functions for the e
			% universe of discourse
numc=11; 	% Number of input membership functions for the c
			% universe of discourse

ge=1/2;,gc=1/2;,gu=5;
		% Scaling gains for tuning membership functions for
		% universes of discourse for e, c and u respectively
		% These are tuned to improve the performance of the FMRLC
we=0.2*(1/ge);
	% we is half the width of the triangular input membership
	% function bases (note that if you change ge, the base width
	% will correspondingly change so that we always end
	% up with uniformly distributed input membership functions)
	% Note that if you change nume you will need to adjust the
	% "0.2" factor if you want membership functions that
	% overlap in the same way.
wc=0.2*(1/gc);
	% Similar to we but for the c universe of discourse
base=0.4*gu;
	% Base width of output membership fuctions of the fuzzy
	% controller

% Place centers of membership functions of the fuzzy controller:

%  Centers of input membership functions for the e universe of
% discourse for  of fuzzy controller (a vector of centers)
ce=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/ge);

% Centers of input membership functions for the c universe of
% discourse for  of fuzzy controller (a vector of centers)
cc=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/gc);
gf=0;

fuzzyrules=[-1  -1   -1   -1  -1    -1  -0.8 -0.6 -0.4 -0.2  0;
	    -1  -1   -1   -1  -1   -0.8 -0.6 -0.4 -0.2   0  0.2;
	    -1  -1   -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2 0.4;
	    -1  -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4 0.6;
	    -1  -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6 0.8;
	    -1 -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8  1;
	  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1   1;
	  -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1   1;
	  -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1    1   1;
	  -0.2  0    0.2  0.4  0.6  0.8   1    1    1    1   1;
	   0   0.2   0.4  0.6  0.8   1    1    1    1    1   1]*gu*gf;

% Next, we define some parameters for the fuzzy inverse model

gye=1/2;,gyc=1/2;
	% Scaling gains for the error and change in error for
	% the inverse model
	% These are tuned to improve the performance of the FMRLC
gp=0.2;

numye=11; 	% Number of input membership functions for the ye
			% universe of discourse
numyc=11; 	% Number of input membership functions for the yc
			% universe of discourse

wye=0.2*(1/gye);	% Sets the width of the membership functions for
					% ye from center to extremes
wyc=0.2*(1/gyc);	% Sets the width of the membership functions for
					% yc from center to extremes
invbase=0.4*gp; % Sets the base of the output membership functions
				% for the inverse model

% Place centers of inverse model membership functions
% For error input for learning Mechanism
cye=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/gye);

% For change in error input for learning mechanism
cyc=[-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1]*(1/gyc);

% The next matrix contains the rule-base matrix for the fuzzy
% inverse model.  Notice that for simplicity we choose it to have
% the same structure as the rule-base for the fuzzy controller.
% While this will work for the control of the simple first order
% linear system for many nonlinear systems a different structure
% will be needed for the rule-base.  Again, the entries are
% the centers of the output membership functions, but now for
% the fuzzy inverse model.

inverrules=[-1  -1   -1   -1  -1    -1  -0.8 -0.6 -0.4 -0.2  0;
	    -1  -1   -1   -1  -1   -0.8 -0.6 -0.4 -0.2   0  0.2;
	    -1  -1   -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2 0.4;
	    -1  -1   -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4 0.6;
	    -1  -1  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6 0.8;
	    -1 -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8  1;
	  -0.8 -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1   1;
	  -0.6 -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1   1;
	  -0.4 -0.2   0   0.2  0.4  0.6  0.8   1    1    1   1;
	  -0.2  0    0.2  0.4  0.6  0.8   1    1    1    1   1;
	   0   0.2   0.4  0.6  0.8   1    1    1    1    1   1]*gp;

% Next, we set up some parameters/variables for the
% knowledge-base modifier

d=1;
% This sets the number of steps the knowledge-base modifier looks
% back in time. For this program it must be an integer
% less than or equal to 10 (but this is easy to make larger)

% The next four vectors are used to store the information about
% which rules were on 1 step in the past, 2 steps in the past, ....,
% 10 steps in the past (so that picking 0<= d <= 10 can be used).

meme_int=[0 0 0 0 0 0 0 0 0 0];
	% sets up the vector to store up to 10 values of e_int
meme_count=[0 0 0 0 0 0 0 0 0 0];
	% sets up the vector to store up to 10 values of e_count
memc_int=[0 0 0 0 0 0 0 0 0 0];
	% sets up the vector to store up to 10 values of c_int
memc_count=[0 0 0 0 0 0 0 0 0 0];
	% sets up the vector to store up to 10 values of c_count

%
%  Next, we intialize the simulation of the closed-loop system.
%

k_p=1;	  % The numerator of the plant.  Change this value to study
		  % the ability of the FMRLC to control other plants.  Also,
		  % you can make this a time-varying parameter.
zeta_p=.707;
       % Damping ratio for the second order plant (could change this
	   % to see how the system will adapt to it)
w_p=1; % Undamped natural frequency for the plant (could change this
	   % to see how the system will adapt to it)
k_r=1;
 % The numerator of the reference model.  Change this value to study
 % the ability of the FMRLC to meet other performance specifications.
a_r=1;
    % The value of -a_r is the pole position for the reference model.
	% Change this value to study the ability of the FMRLC to meet
	% other performance specifications (e.g., a faster response).

t=0; 		% Reset time to zero
index=1;	% This is time's index (not time, its index).
tstop=64;	% Stopping time for the simulation (in seconds)
step=0.01;  % Integration step size
x=[0;0];	% Intial condition on state	of the plant

% Need a state space representation for the plant.  Since our
% plant is linear we use the standard form of xdot=Ax+Bu, y=Cx+Du
% Matrix A of state space representation of plant

A=[0 1;
   -w_p^2 -2*zeta_p*w_p];
B=[0; 1];	    % Matrix B of state space representation of plant
C=[k_p 0];	    % Matrix C of state space representation of plant


%
% Next, we start the simulation of the system.  This is the main
% loop for the simulation of the FMRLC.
%
while t <= tstop
	y(index)=C*x;     % Output of the plant

% Next, we define the reference input r as a sine wave

r(index)=sin(.6*t);



ym(index)=(1/(2+a_r*step))*((2-a_r*step)*ymold+...
                                    k_r*step*(r(index)+rold));

ymold=ym(index);
rold=r(index);
	% This saves the past value of the ym (r) so that we can use it
	% the next time around the loop

% Now that we have simulated the next step for the plant and reference
% model we will focus on the two fuzzy components.

% First, for the given fuzzy controller inputs we determine
% the extent at which the error membership functions
% of the fuzzy controller are on (this is the fuzzification part).

c_count=0;,e_count=0;   % These are used to count the number of
						% non-zero mf certainities
of e and c
e=r(index)-y(index);
			% Calculates the error input for the fuzzy controller
c=(e-eold)/step;
	% Calculates the change in error input for the fuzzy controller
eold=e;
% Saves the past value of e for use in the next time through the
% loop

% The following if-then structure fills the vector mfe
% with the certainty of each membership fucntion of e for the
% current input e

	if e<=ce(1)		% Takes care of saturation of the left-most
					% membership function
         mfe=[1 0 0 0 0 0 0 0 0 0 0]; % i.e., the only one on is the
         							  %left-most one
	 e_count=e_count+1;,e_int=1; 	  %  One mf on, it is the
	 								  %left-most one.
	elseif e>=ce(nume)				  % Takes care ofsaturation
									  %of the right-most mf
	 mfe=[0 0 0 0 0 0 0 0 0 0 1];
	 e_count=e_count+1;,e_int=nume; % One mf on, it is the
	 								%right-most one
	else      % In this case the input is on the middle part of the
			  % universe of discourse for e
			  % Next, we are going to cycle through the mfs to
			  % find all that are on
	   for i=1:nume
		 if e<=ce(i)
		  mfe(i)=max([0 1+(e-ce(i))/we]);
		  				% In this case the input isto the
		  				% left of the center ce(i)and we compute
						% the value of the mfcentered at ce(i)
						% for this input e
			if mfe(i)~=0
				% If the certainty is not equal to zerothen say
				% that have one mf on by incrementing our count
			 e_count=e_count+1;
			 e_int=i;	% This term holds the index last entry
			 			% with a non-zero term
			end
		 else
		  mfe(i)=max([0,1+(ce(i)-e)/we]);
		  						% In thiscase the input is to the
		  						% right ofthe center ce(i)
			if mfe(i)~=0
			 e_count=e_count+1;
			 e_int=i;  % This term holds the index of the

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩欧美国产wwwww| 日本美女一区二区| 成人av在线看| 日本一区二区久久| 国产一区二区三区免费在线观看| 精品视频色一区| 欧美二区三区的天堂| 一区二区三区电影在线播| 国产另类ts人妖一区二区| 久久亚洲一级片| 国产精品18久久久久久vr| 国产欧美一区二区精品性色| 亚洲视频免费观看| 亚洲一区二区在线免费看| 色婷婷综合中文久久一本| 日韩一区日韩二区| 精品视频一区 二区 三区| 秋霞影院一区二区| 亚洲国产高清不卡| 欧洲一区在线观看| 日本美女视频一区二区| 久久久不卡影院| 一本到高清视频免费精品| 精品少妇一区二区三区免费观看 | 欧美激情综合在线| 99re在线视频这里只有精品| 亚洲电影一级片| 久久久综合激的五月天| 色婷婷亚洲精品| 五月天激情小说综合| 欧美岛国在线观看| 成人性视频网站| 亚洲国产欧美在线| 国产欧美日韩在线观看| 欧美午夜宅男影院| 成人激情综合网站| 精品亚洲porn| 91精品国产综合久久久久久久久久 | 精品1区2区在线观看| 欧美视频中文一区二区三区在线观看| 蜜臀av性久久久久av蜜臀妖精| 亚洲精品少妇30p| 国产精品丝袜黑色高跟| 日韩三级免费观看| 日韩欧美一二三四区| 日韩中文字幕亚洲一区二区va在线 | 亚洲一区二区三区四区在线 | 日本韩国一区二区三区| 国产午夜亚洲精品羞羞网站| 欧美久久久久久久久中文字幕| 99re热视频精品| 99国产精品久久久久久久久久| 国产一区二区免费视频| 久久99精品久久久久久| 久久不见久久见免费视频7 | www.亚洲在线| 99精品视频一区二区| 99国产精品一区| 国产精品影视天天线| 国产精品996| 不卡视频一二三四| 在线观看免费亚洲| 欧美一区二区人人喊爽| 欧美xingq一区二区| 丁香六月久久综合狠狠色| 成人av高清在线| 欧美丝袜丝交足nylons图片| 777奇米成人网| 久久精品一二三| 一区二区三区资源| 久久精品国产免费看久久精品| 国产精品亚洲一区二区三区在线 | 99re在线精品| 4hu四虎永久在线影院成人| 久久久久久久精| 亚洲成人av一区二区三区| 国产91精品在线观看| 美国欧美日韩国产在线播放| 国产成人啪免费观看软件 | 美女爽到高潮91| eeuss鲁一区二区三区| 美女精品自拍一二三四| 成人综合在线观看| 日韩一级片在线观看| 伊人色综合久久天天| 国产麻豆欧美日韩一区| 欧美区一区二区三区| 国产精品欧美久久久久一区二区| 婷婷久久综合九色国产成人| 成人a区在线观看| 国产精品高潮久久久久无| 精品亚洲porn| www一区二区| 蜜臀av在线播放一区二区三区| 一本到不卡精品视频在线观看| 久久精品视频一区| 日韩国产在线观看| 欧美精品vⅰdeose4hd| 亚洲激情在线激情| 在线观看国产91| 一区二区三区欧美激情| 亚洲一区二区三区美女| 91麻豆视频网站| 亚洲成av人影院在线观看网| 色偷偷成人一区二区三区91| 一区二区三区产品免费精品久久75| 成人高清在线视频| 亚洲精品一二三区| 在线看国产日韩| 日韩影视精彩在线| 亚洲卡通动漫在线| 欧美在线free| 国内成人免费视频| 国产精品午夜春色av| 在线观看三级视频欧美| 天天操天天色综合| 亚洲国产电影在线观看| 精品久久人人做人人爽| 亚洲视频一区二区免费在线观看| 91丨九色丨尤物| 五月婷婷色综合| 久久久精品tv| 在线观看亚洲a| 高清成人免费视频| 亚洲成人久久影院| 国产日韩欧美精品一区| 91国模大尺度私拍在线视频| 欧美一区二区在线看| 99精品视频在线观看| 久久97超碰色| 亚洲国产欧美另类丝袜| 国产精品欧美一区二区三区| 欧美日韩精品一二三区| av资源网一区| 国产精品1区二区.| 日本不卡不码高清免费观看| 日韩一区欧美小说| 国产精品久99| 国产精品福利av| 久久久亚洲精品一区二区三区 | ...xxx性欧美| 久久夜色精品国产欧美乱极品| 一个色在线综合| 亚洲视频资源在线| 国产精品久久福利| 中文字幕日本不卡| 国产蜜臀av在线一区二区三区| 在线观看三级视频欧美| 久久网这里都是精品| 国产高清精品网站| 天天综合日日夜夜精品| 久久91精品国产91久久小草| 精品国产伦理网| 久久久久久久一区| 久久久美女毛片 | 成人精品小蝌蚪| av激情成人网| 欧美日韩一区三区四区| 欧美精品xxxxbbbb| 日韩精品一区二区三区swag| 国产精品丝袜黑色高跟| 欧美精品在线观看一区二区| 欧美色男人天堂| 久久综合狠狠综合久久综合88| 欧美tickle裸体挠脚心vk| 国产亚洲一二三区| 樱桃视频在线观看一区| 91精品国产91久久久久久一区二区 | 亚洲色图欧洲色图| 亚洲男同性视频| 久久99在线观看| 91香蕉国产在线观看软件| 91麻豆精品国产无毒不卡在线观看| 亚洲精品一区二区三区在线观看| 国产精品久久久久影院老司 | 国产日韩一级二级三级| 亚洲已满18点击进入久久| 久久精品久久综合| 欧美一区二区在线视频| 制服丝袜成人动漫| 99v久久综合狠狠综合久久| 欧美日韩国产片| 1000部国产精品成人观看| 奇米色一区二区三区四区| 91免费观看在线| 国产亚洲一二三区| 精品系列免费在线观看| 91精品国产品国语在线不卡| 亚洲另类在线制服丝袜| 成熟亚洲日本毛茸茸凸凹| 久久久亚洲高清| 777奇米成人网| 中文字幕精品—区二区四季| 日韩不卡一二三区| 欧美丰满少妇xxxxx高潮对白| 亚洲色欲色欲www| 一本色道久久综合亚洲aⅴ蜜桃| 国产午夜精品一区二区三区嫩草| 狠狠色狠狠色综合日日91app| 欧美一区二区私人影院日本|