?? ukf_predict1.m
字號(hào):
%UKF_PREDICT1 Nonaugmented (Additive) UKF prediction step%% Syntax:% [M,P] = UKF_PREDICT1(M,P,[a,Q,param,alpha,beta,kappa,mat])%% In:% M - Nx1 mean state estimate of previous step% P - NxN state covariance of previous step% a - Dynamic model function as a matrix A defining% linear function a(x) = A*x, inline function,% function handle or name of function in% form a(x,param) (optional, default eye())% Q - Process noise of discrete model (optional, default zero)% param - Parameters of a (optional, default empty)% alpha - Transformation parameter (optional)% beta - Transformation parameter (optional)% kappa - Transformation parameter (optional)% mat - If 1 uses matrix form (optional, default 0)%% Out:% M - Updated state mean% P - Updated state covariance%% Description:% Perform additive form Unscented Kalman Filter prediction step.%% Function a should be such that it can be given% DxN matrix of N sigma Dx1 points and it returns % the corresponding predictions for each sigma% point. %% See also:% UKF_UPDATE1, UKF_PREDICT2, UKF_UPDATE2, UKF_PREDICT3, UKF_UPDATE3,% UT_TRANSFORM, UT_WEIGHTS, UT_MWEIGHTS, UT_SIGMAS% Copyright (C) 2003-2006 Simo S鋜kk
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -