?? ekf_predict1.m
字號:
%EKF_PREDICT1 1st order Extended Kalman Filter prediction step
%
% Syntax:
% [M,P] = EKF_PREDICT1(M,P,[A,Q,a,W,param])
%
% In:
% M - Nx1 mean state estimate of previous step
% P - NxN state covariance of previous step
% A - Derivative of a() with respect to state as
% matrix, inline function, function handle or
% name of function in form A(x,param) (optional, default eye())
% Q - Process noise of discrete model (optional, default zero)
% a - Mean prediction E[a(x[k-1],q=0)] as vector,
% inline function, function handle or name
% of function in form a(x,param) (optional, default A(x)*X)
% W - Derivative of a() with respect to noise q
% as matrix, inline function, function handle
% or name of function in form W(x,param) (optional, default identity)
% param - Parameters of a (optional, default empty)
%
% Out:
% M - Updated state mean
% P - Updated state covariance
%
% Description:
% Perform Extended Kalman Filter prediction step.
%
% See also:
% EKF_UPDATE1, EKF_PREDICT2, EKF_UPDATE2, DER_CHECK,
% LTI_DISC, KF_PREDICT, KF_UPDATE
% Copyright (C) 2002-2006 Simo S鋜kk
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -