?? data structor.txt
字號:
}
遞 歸算法的執行過程分遞推和回歸兩個階段。在遞推階段,把較復雜的問題(規模為n)的求解推到比原問題簡單一些的問題(規模小于n)的求解。例如上例中,求 解fib(n),把它推到求解fib(n-1)和fib(n-2)。也就是說,為計算fib(n),必須先計算fib(n-1)和fib(n- 2),而計算fib(n-1)和fib(n-2),又必須先計算fib(n-3)和fib(n-4)。依次類推,直至計算fib(1)和fib(0),分 別能立即得到結果1和0。在遞推階段,必須要有終止遞歸的情況。例如在函數fib中,當n為1和0的情況。
在回歸階段,當獲得最簡單情況的解后,逐級返回,依次得到稍復雜問題的解,例如得到fib(1)和fib(0)后,返回得到fib(2)的結果,……,在得到了fib(n-1)和fib(n-2)的結果后,返回得到fib(n)的結果。
在編寫遞歸函數時要注意,函數中的局部變量和參數知識局限于當前調用層,當遞推進入“簡單問題”層時,原來層次上的參數和局部變量便被隱蔽起來。在一系列“簡單問題”層,它們各有自己的參數和局部變量。
由 于遞歸引起一系列的函數調用,并且可能會有一系列的重復計算,遞歸算法的執行效率相對較低。當某個遞歸算法能較方便地轉換成遞推算法時,通常按遞推算法編 寫程序。例如上例計算斐波那契數列的第n項的函數fib(n)應采用遞推算法,即從斐波那契數列的前兩項出發,逐次由前兩項計算出下一項,直至計算出要求 的第n項。
【問題】 組合問題
問題描述:找出從自然數1、2、……、n中任取r個數的所有組合。例如n=5,r=3的所有組合為: (1)5、4、3 (2)5、4、2 (3)5、4、1
(4)5、3、2 (5)5、3、1 (6)5、2、1
(7)4、3、2 (8)4、3、1 (9)4、2、1
(10)3、2、1
分 析所列的10個組合,可以采用這樣的遞歸思想來考慮求組合函數的算法。設函數為void comb(int m,int k)為找出從自然數1、2、……、m中任取k個數的所有組合。當組合的第一個數字選定時,其后的數字是從余下的m-1個數中取k-1數的組合。這就將求m 個數中取k個數的組合問題轉化成求m-1個數中取k-1個數的組合問題。設函數引入工作數組a[ ]存放求出的組合的數字,約定函數將確定的k個數字組合的第一個數字放在a[k]中,當一個組合求出后,才將a[ ]中的一個組合輸出。第一個數可以是m、m-1、……、k,函數將確定組合的第一個數字放入數組后,有兩種可能的選擇,因還未去頂組合的其余元素,繼續遞 歸去確定;或因已確定了組合的全部元素,輸出這個組合。細節見以下程序中的函數comb。
【程序】
# include
# define MAXN 100
int a[MAXN];
void comb(int m,int k)
{ int i,j;
for (i=m;i>=k;i–)
{ a[k]=i;
if (k>1)
comb(i-1,k-1);
else
{ for (j=a[0];j>0;j–)
printf(“%4d”,a[j]);
printf(“\n”);
}
}
}
void main()
{ a[0]=3;
comb(5,3);
}
【問題】 背包問題
問題描述:有不同價值、不同重量的物品n件,求從這n件物品中選取一部分物品的選擇方案,使選中物品的總重量不超過指定的限制重量,但選中物品的價值之和最大。
設n 件物品的重量分別為w0、w1、…、wn-1,物品的價值分別為v0、v1、…、vn-1。采用遞歸尋找物品的選擇方案。設前面已有了多種選擇的方案,并 保留了其中總價值最大的方案于數組option[ ],該方案的總價值存于變量maxv。當前正在考察新方案,其物品選擇情況保存于數組cop[ ]。假定當前方案已考慮了前i-1件物品,現在要考慮第i件物品;當前方案已包含的物品的重量之和為tw;至此,若其余物品都選擇是可能的話,本方案能達 到的總價值的期望值為tv。算法引入tv是當一旦當前方案的總價值的期望值也小于前面方案的總價值maxv時,繼續考察當前方案變成無意義的工作,應終止 當前方案,立即去考察下一個方案。因為當方案的總價值不比maxv大時,該方案不會被再考察,這同時保證函數后找到的方案一定會比前面的方案更好。
對于第i件物品的選擇考慮有兩種可能:
(1) 考慮物品i被選擇,這種可能性僅當包含它不會超過方案總重量限制時才是可行的。選中后,繼續遞歸去考慮其余物品的選擇。
(2) 考慮物品i不被選擇,這種可能性僅當不包含物品i也有可能會找到價值更大的方案的情況。
按以上思想寫出遞歸算法如下:
try(物品i,當前選擇已達到的重量和,本方案可能達到的總價值tv)
{ /*考慮物品i包含在當前方案中的可能性*/
if(包含物品i是可以接受的)
{ 將物品i包含在當前方案中;
if (i
try(i+1,tw+物品i的重量,tv);
else
/*又一個完整方案,因為它比前面的方案好,以它作為最佳方案*/
以當前方案作為臨時最佳方案保存;
恢復物品i不包含狀態;
}
/*考慮物品i不包含在當前方案中的可能性*/
if (不包含物品i僅是可男考慮的)
if (i
try(i+1,tw,tv-物品i的價值);
else
/*又一個完整方案,因它比前面的方案好,以它作為最佳方案*/
以當前方案作為臨時最佳方案保存;
}
為了理解上述算法,特舉以下實例。設有4件物品,它們的重量和價值見表:
物品 0 1 2 3
重量 5 3 2 1
價值 4 4 3 1
并設限制重量為7。則按以上算法,下圖表示找解過程。由圖知,一旦找到一個解,算法就進一步找更好的佳。如能判定某個查找分支不會找到更好的解,算法不會在該分支繼續查找,而是立即終止該分支,并去考察下一個分支。
按上述算法編寫函數和程序如下:
【程序】
# include
# define N 100
double limitW,totV,maxV;
int option[N],cop[N];
struct { double weight;
double value;
}a[N];
int n;
void find(int i,double tw,double tv)
{ int k;
/*考慮物品i包含在當前方案中的可能性*/
if (tw+a[i].weight<=limitW)
{ cop[i]=1;
if (i
else
{ for (k=0;k
option[k]=cop[k];
maxv=tv;
}
cop[i]=0;
}
/*考慮物品i不包含在當前方案中的可能性*/
if (tv-a[i].value>maxV)
if (i
else
{ for (k=0;k
option[k]=cop[k];
maxv=tv-a[i].value;
}
}
void main()
{ int k;
double w,v;
printf(“輸入物品種數\n”);
scanf((“%d”,&n);
printf(“輸入各物品的重量和價值\n”);
for (totv=0.0,k=0;k
{ scanf(“%1f%1f”,&w,&v);
a[k].weight=w;
a[k].value=v;
totV+=V;
}
printf(“輸入限制重量\n”);
scanf(“%1f”,&limitV);
maxv=0.0;
for (k=0;k find(0,0.0,totV);
for (k=0;k
if (option[k]) printf(“%4d”,k+1);
printf(“\n總價值為%.2f\n”,maxv);
}
作 為對比,下面以同樣的解題思想,考慮非遞歸的程序解。為了提高找解速度,程序不是簡單地逐一生成所有候選解,而是從每個物品對候選解的影響來形成值得進一 步考慮的候選解,一個候選解是通過依次考察每個物品形成的。對物品i的考察有這樣幾種情況:當該物品被包含在候選解中依舊滿足解的總重量的限制,該物品被 包含在候選解中是應該繼續考慮的;反之,該物品不應該包括在當前正在形成的候選解中。同樣地,僅當物品不被包括在候選解中,還是有可能找到比目前臨時最佳 解更好的候選解時,才去考慮該物品不被包括在候選解中;反之,該物品不包括在當前候選解中的方案也不應繼續考慮。對于任一值得繼續考慮的方案,程序就去進 一步考慮下一個物品。
【程序】
# include
# define N 100
double limitW;
int cop[N];
struct ele { double weight;
double value;
} a[N];
int k,n;
struct { int ;
double tw;
double tv;
}twv[N];
void next(int i,double tw,double tv)
{ twv[i].=1;
twv[i].tw=tw;
twv[i].tv=tv;
}
double find(struct ele *a,int n)
{ int i,k,f;
double maxv,tw,tv,totv;
maxv=0;
for (totv=0.0,k=0;k
totv+=a[k].value;
next(0,0.0,totv);
i=0;
While (i>=0)
{ f=twv[i].;
tw=twv[i].tw;
tv=twv[i].tv;
switch(f)
{ case 1: twv[i].++;
if (tw+a[i].weight<=limitW)
if (i
{ next(i+1,tw+a[i].weight,tv);
i++;
}
else
{ maxv=tv;
for (k=0;k
cop[k]=twv[k].!=0;
}
break;
case 0: i–;
break;
default: twv[i].=0;
if (tv-a[i].value>maxv)
if (i
{ next(i+1,tw,tv-a[i].value);
i++;
}
else
{ maxv=tv-a[i].value;
for (k=0;k
cop[k]=twv[k].!=0;
}
break;
}
}
return maxv;
}
void main()
{ double maxv;
printf(“輸入物品種數\n”);
scanf((“%d”,&n);
printf(“輸入限制重量\n”);
scanf(“%1f”,&limitW);
printf(“輸入各物品的重量和價值\n”);
for (k=0;k
scanf(“%1f%1f”,&a[k].weight,&a[k].value);
maxv=find(a,n);
printf(“\n選中的物品為\n”);
for (k=0;k
if (option[k]) printf(“%4d”,k+1);
printf(“\n總價值為%.2f\n”,maxv);
}
五、回溯法
回 溯法也稱為試探法,該方法首先暫時放棄關于問題規模大小的限制,并將問題的候選解按某種順序逐一枚舉和檢驗。當發現當前候選解不可能是解時,就選擇下一個 候選解;倘若當前候選解除了還不滿足問題規模要求外,滿足所有其他要求時,繼續擴大當前候選解的規模,并繼續試探。如果當前候選解滿足包括問題規模在內的 所有要求時,該候選解就是問題的一個解。在回溯法中,放棄當前候選解,尋找下一個候選解的過程稱為回溯。擴大當前候選解的規模,以繼續試探的過程稱為向前 試探。
1、回溯法的一般描述
可用回溯法求解的問題P,通常要能表達為:對于已知的由n元組(x1,x2,…,xn)組成的一個狀態空間 E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},給定關于n元組中的一個分量的一個約束集D,要求E中滿足D的全部約束條件的所有n元組。其中Si是分量xi的定義域,且 |Si| 有限,i=1,2,…,n。我們稱E中滿足D的全部約束條件的任一n元組為問題P的一個解。
解問題P的最樸素的方法就是枚舉法,即對E中的所有n元組逐一地檢測其是否滿足D的全部約束,若滿足,則為問題P的一個解。但顯然,其計算量是相當大的。
我 們發現,對于許多問題,所給定的約束集D具有完備性,即i元組(x1,x2,…,xi)滿足D中僅涉及到x1,x2,…,xi的所有約束意味著j (jj。因此,對于約束集D具有完備性的問題P,一旦檢測斷定某個j元組(x1,x2,…,xj)違反D中僅涉及x1,x2,…,xj的一個約束,就可以 肯定,以(x1,x2,…,xj)為前綴的任何n元組(x1,x2,…,xj,xj+1,…,xn)都不會是問題P的解,因而就不必去搜索它們、檢測它 們。回溯法正是針對這類問題,利用這類問題的上述性質而提出來的比枚舉法效率更高的算法。
回溯法首先將問題P的n元組的狀態空間E表示成一棵高為n的帶權有序樹T,把在E中求問題P的所有解轉化為在T中搜索問題P的所有解。樹T類似于檢索樹,它可以這樣構造:
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -