亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? libsvm 2.32版源碼
??
字號:
Libsvm is a simple, easy-to-use, and efficient software for SVMclassification and regression. It can solve C-SVM classification,nu-SVM classification, one-class-SVM, epsilon-SVM regression,and nu-SVM regression. This document explains the use of libsvm.Libsvm is available at http://www.csie.ntu.edu.tw/~cjlin/libsvmPlease read the COPYRIGHT file before using libsvm.Installation============On Unix systems, type `make' to build the `svm-train' and `svm-predict'programs. Run them without arguments to show the usages of them.On other systems, consult `Makefile' to build them or use the pre-builtbinaries (Windows binaries are in the subdirectory `windows').The format of training and testing data file is:<label> <index1>:<value1> <index2>:<value2> ......<label> is the target value of the training data. For classification,it should be an integer which identifies a class (multi-class classificationis supported). For regression, it's any real number. For one-class SVM,it's not used so can be any number. <index> is an integer starting from 1,<value> is a real number. The labels in the testing data file are only used tocalculate accuracy or error. If they are unknown, just fill this column with anumber.There is a sample training data for classification in this package:heart_scale.Type `svm-train heart_scale', and the program will read the trainingdata and output the model file `heart_scale.model'. Then you cantype `svm-predict heart_scale heart_scale.model output' to see therate of classification on training data. The `output' file containsthe prediction value of the model.There are some other useful programs in this package.svm-scale:	This is a tool for scaling input data file.svm-toy:	This is a simple graphical interface which shows how SVM	separate data in a plane. You can click in the window to 	draw data points. Use "change" button to choose class 	1 or 2, "load" button to load data from a file, "save" button	to save data to a file, "run" button to obtain an SVM model,	and "clear" button to clear the window.	You can enter options in the bottom of the window, the syntax of	options is the same as `svm-train'.	Note that "load" and "save" consider data in the classification but	not the regression case. Each data point has one label (the color)	and two attributes (x-axis and y-axis values).	Type `make' in respective directories to build them.	You need Qt library to build the Qt version.	(You can download it from http://www.trolltech.com)	You need GTK+ library to build the GTK version.	(You can download it from http://www.gtk.org)		We use Visual C++ to build the Windows version.	The pre-built Windows binaries are in the windows subdirectory.`svm-train' Usage=================Usage: svm-train [options] training_set_file [model_file]options:-s svm_type : set type of SVM (default 0)	0 -- C-SVC	1 -- nu-SVC	2 -- one-class SVM	3 -- epsilon-SVR	4 -- nu-SVR-t kernel_type : set type of kernel function (default 2)	0 -- linear: u'*v	1 -- polynomial: (gamma*u'*v + coef0)^degree	2 -- radial basis function: exp(-gamma*|u-v|^2)	3 -- sigmoid: tanh(gamma*u'*v + coef0)-d degree : set degree in kernel function (default 3)-g gamma : set gamma in kernel function (default 1/k)-r coef0 : set coef0 in kernel function (default 0)-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)-m cachesize : set cache memory size in MB (default 40)-e epsilon : set tolerance of termination criterion (default 0.001)-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)-wi weight: set the parameter C of class i to weight*C in C-SVC (default 1)-v n: n-fold cross validation modeThe k in the -g option means the number of attributes in the input data.option -v randomly splits the data into n parts and calculates crossvalidation accuracy/mean squared error on them.`svm-predict' Usage===================Usage: svm-predict test_file model_file output_filemodel_file is the model file generated by svm-train.test_file is the test data you want to predict.svm-predict will produce output in the output_file.No options are needed for svm-predict.Tips on practical use=====================* Scale your data. For example, scale each attribute to [0,1] or [-1,+1].* For C-SVC, try small and large C, like 1 to 1000 and decide which are  better for your data by cross validation. For the better C's, try  several gamma's.* nu in nu-SVC/one-class-SVM/nu-SVR approximates the fraction of training  errors and support vectors.* If data for classification are unbalanced (e.g. many positive and  few negative), try different penalty parameters C by -wi (see  examples below).Examples========> svm-train -s 0 -c 1000 -t 1 -g 1 -r 1 -d 3 data_fileTrain a classifier with polynomial kernel (u'v+1)^3 and C = 1000> svm-train -s 1 -n 0.1 -t 2 -g 0.5 -e 0.00001 data_fileTrain a classifier by nu-SVM (nu = 0.1) with RBF kernelexp(-0.5|u-v|^2) and stopping tolerance 0.00001> svm-train -s 3 -p 0.1 -t 0 -c 10 data_fileSolve SVM regression with linear kernel u'v and C=10, and epsilon = 0.1in the loss function.> svm-train -s 0 -c 10 -w1 1 -w-1 5 data_fileTrain a classifier with penalty 10 for class 1 and penalty 50for class -1.> svm-train -s 0 -c 500 -g 0.1 -v 5 data_fileDo five-fold cross validation for the classifier usingthe parameters C = 500 and gamma = 0.1Library Usage=============These functions and structures are declared in the header file `svm.h'.You need to #include "svm.h" in your C/C++ source files and link yourprogram with `svm.cpp'. You can see `svm-train.c' and `svm-predict.c'for examples showing how to use them.Before you classify test data, you need to construct an SVM model(`svm_model') using training data. A model can also be saved ina file for later use. Once an SVM model is available, you can use itto classify new data.- Function: struct svm_model *svm_train(const struct svm_problem *prob,					const struct svm_parameter *param);    This function constructs and returns an SVM model according to    the given training data and parameters.    struct svm_problem describes the problem:		struct svm_problem	{		int l;		double *y;		struct svm_node **x;	};     where `l' is the number of training data, and `y' is an array containing    their target values. (integers in classification, real numbers in    regression) `x' is an array of pointers, each of which points to a sparse    representation (array of svm_node) of one training vector.    For example, if we have the following training data:    LABEL	ATTR1	ATTR2	ATTR3	ATTR4	ATTR5    -----	-----	-----	-----	-----	-----      1		  0	  0.1	  0.2	  0	  0      2		  0	  0.1	  0.3	 -1.2	  0      1		  0.4	  0	  0	  0	  0      2		  0	  0.1	  0	  1.4	  0.5      3		 -0.1	 -0.2	  0.1	  1.1	  0.1    then the components of svm_problem are:    l = 5    y -> 1 2 1 2 3    x -> [ ] -> (2,0.1) (3,0.2) (-1,?)	 [ ] -> (2,0.1) (3,0.3) (4,-1.2) (-1,?)	 [ ] -> (1,0.4) (-1,?)	 [ ] -> (2,0.1) (4,1.4) (5,0.5) (-1,?)	 [ ] -> (1,-0.1) (2,-0.2) (3,0.1) (4,1.1) (5,0.1) (-1,?)    where (index,value) is stored in the structure `svm_node':	struct svm_node	{		int index;		double value;	};    index = -1 indicates the end of one vector.     struct svm_parameter describes the parameters of an SVM model:	struct svm_parameter	{		int svm_type;		int kernel_type;		double degree;	// for poly		double gamma;	// for poly/rbf/sigmoid		double coef0;	// for poly/sigmoid		// these are for training only		double cache_size; // in MB		double eps;	// stopping criteria		double C;	// for C_SVC, EPSILON_SVR, and NU_SVR		int nr_weight;		// for C_SVC		int *weight_label;	// for C_SVC		double* weight;		// for C_SVC		double nu;	// for NU_SVC, ONE_CLASS, and NU_SVR		double p;	// for EPSILON_SVR		int shrinking;	// use the shrinking heuristics	};    svm_type can be one of C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR.    C_SVC:		C-SVM classification    NU_SVC:		nu-SVM classification    ONE_CLASS:		one-class-SVM    EPSILON_SVR:	epsilon-SVM regression    NU_SVR:		nu-SVM regression    kernel_type can be one of LINEAR, POLY, RBF, SIGMOID.    LINEAR:	u'*v    POLY:	(gamma*u'*v + coef0)^degree    RBF:	exp(-gamma*|u-v|^2)    SIGMOID:	tanh(gamma*u'*v + coef0)    cache_size is the size of the kernel cache, specified in megabytes.    C is the cost of constraints violation. (we usually use 1 to 1000)    eps is the stopping criterion. (we usually use 0.00001 in nu-SVC,    0.001 in others). nu is the parameter in nu-SVM, nu-SVR, and    one-class-SVM. p is the epsilon in epsilon-insensitive loss function    of epsilon-SVM regression. shrinking = 1 means shrinking is conducted;    = 0 otherwise.    nr_weight, weight_label, and weight are used to change the penalty    for some classes (If the weight for a class is not changed, it is    set to 1). This is useful for training classifier using unbalanced    input data or with asymmetric misclassification cost.    nr_weight is the number of elements in the array weight_label and    weight. Each weight[i] corresponds to weight_label[i], meaning that    the penalty of class weight_label[i] is scaled by a factor of weight[i].        If you do not want to change penalty for any of the classes,    just set nr_weight to 0.    *NOTE* Because svm_model contains pointers to svm_problem, you can    not free the memory used by svm_problem if you are still using the    svm_model produced by svm_train().- Function: double svm_predict(const struct svm_model *model,                             const struct svm_node *x);    This function does classification or regression on a test vector x    given a model.    For a classification model, the predicted class for x is returned.    For a regression model, the function value of x calculated using    the model is returned. For one-class model, +1 or -1 is returned.- Function: int svm_save_model(const char *model_file_name,			       const struct svm_model *model);    This function saves a model to a file; returns 0 on success, or -1    if an error occurs.- Function: struct svm_model *svm_load_model(const char *model_file_name);    This function returns a pointer to the model read from the file,    or a null pointer if the model could not be loaded.- Function: void svm_destroy_model(struct svm_model *model);    This function frees the memory used by a model.Java version============The precompiled java class archive `libsvm.jar' and its source files arein the java subdirectory. To run the programs, usejava -classpath libsvm.jar svm_train <arguments>java -classpath libsvm.jar svm_predict <arguments>java -classpath libsvm.jar svm_toyWe have tried IBM's and Sun's JDK.You may need to add Java runtime library (like classes.zip) to the classpath.You may need to increase maximum Java heap size.Library usages are similar to the C version. These functions are available:public class svm {	public static svm_model svm_train(svm_problem prob, svm_parameter param);	public static double svm_predict(svm_model model, svm_node[] x);	public static void svm_save_model(String model_file_name, svm_model model) throws IOException	public static svm_model svm_load_model(String model_file_name) throws IOException}The library is in the "libsvm" package.Note that in Java version, svm_node[] is not ended with a node whose index = -1.ADDITIONAL INFORMATION============Chih-Chung Chang and Chih-Jen LinLIBSVM : a library for support vector machines.http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.ps.gzAcknowledgments:This work was supported in part by the National Science Council of Taiwan via the grant NSC 89-2213-E-002-013.The authors thank Chih-Wei Hsu and Jen-Hao Leefor many helpful discussions and comments.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
www.成人在线| 不卡电影免费在线播放一区| 亚洲国产精华液网站w| 欧美系列亚洲系列| 成人晚上爱看视频| 国产成人免费视频| 国产成人夜色高潮福利影视| 日本韩国精品在线| 日本韩国一区二区三区视频| 精品久久人人做人人爽| 欧美精品日韩一区| 在线观看91精品国产麻豆| 国产欧美精品国产国产专区| 久久免费国产精品| 国产欧美日韩在线视频| 三级亚洲高清视频| 蜜桃视频一区二区三区在线观看| 亚洲午夜精品久久久久久久久| 亚洲精品免费播放| 亚洲妇熟xx妇色黄| 91一区二区三区在线观看| 91色婷婷久久久久合中文| 久久亚洲欧美国产精品乐播 | 欧美日韩一卡二卡三卡 | 日韩精品专区在线| 精品久久国产老人久久综合| 亚洲777理论| 国产精品66部| 91免费视频网址| 国产人成一区二区三区影院| 久久机这里只有精品| 成人午夜免费视频| 国产日韩欧美精品电影三级在线| 麻豆国产精品视频| 日韩欧美电影一区| 久久精品99国产精品日本| 欧美日本视频在线| 国产婷婷色一区二区三区| 亚洲免费观看高清完整版在线观看熊| 一区二区三区加勒比av| 六月丁香综合在线视频| 欧美一二三在线| 亚洲欧洲精品天堂一级| 免费人成黄页网站在线一区二区| 成人激情电影免费在线观看| 欧美国产欧美亚州国产日韩mv天天看完整| 国内一区二区在线| 日本精品一区二区三区高清| 亚洲老司机在线| 欧美三区在线观看| 日韩高清不卡一区二区三区| 99在线精品免费| 亚洲欧美国产三级| 欧美日韩在线一区二区| 秋霞影院一区二区| 精品国产乱码久久久久久影片| 一卡二卡三卡日韩欧美| 欧美区在线观看| 久久成人免费网| 欧美激情艳妇裸体舞| 91麻豆自制传媒国产之光| 五月婷婷久久丁香| 在线精品观看国产| 国产精品私房写真福利视频| 奇米影视一区二区三区小说| 欧美大胆一级视频| www.综合网.com| 亚洲国产精品天堂| 久久蜜桃av一区精品变态类天堂| 成人黄页毛片网站| 亚洲www啪成人一区二区麻豆| 欧美成人艳星乳罩| youjizz国产精品| 青椒成人免费视频| 国产精品不卡一区二区三区| 成人黄色软件下载| 性做久久久久久| 国产网站一区二区| 欧美日韩一卡二卡三卡| 国产精品一区二区在线播放| 亚洲欧美区自拍先锋| 欧美成人bangbros| 精品国产免费久久| 色综合网色综合| 国产清纯美女被跳蛋高潮一区二区久久w | 亚洲免费在线看| 日韩欧美黄色影院| 在线观看日产精品| 豆国产96在线|亚洲| 国产三级欧美三级| 欧美日韩你懂的| www.欧美日韩国产在线| 麻豆视频一区二区| 亚洲一区二区三区爽爽爽爽爽 | 99re在线精品| 亚洲伊人色欲综合网| 国产欧美久久久精品影院| 欧美男人的天堂一二区| 不卡高清视频专区| 国产精品91xxx| 九色porny丨国产精品| 久久久久久久综合日本| 欧美日韩久久不卡| 91色综合久久久久婷婷| 国产精品一区三区| 韩国一区二区在线观看| 午夜久久久久久久久| 椎名由奈av一区二区三区| 91国在线观看| 99精品欧美一区二区蜜桃免费| 麻豆精品在线视频| 日本大胆欧美人术艺术动态| 亚洲一区影音先锋| 亚洲激情中文1区| 亚洲三级小视频| 中文字幕一区二区在线播放| 国产精品午夜春色av| 久久精品一区四区| 樱桃国产成人精品视频| 中文字幕 久热精品 视频在线| 久久一留热品黄| 久久嫩草精品久久久精品一| 精品久久久久久久人人人人传媒| 6080国产精品一区二区| 国产一区二区看久久| 亚洲免费观看视频| 亚洲乱码国产乱码精品精可以看| 亚洲欧洲成人自拍| 亚洲欧美日韩系列| 亚洲精品大片www| 亚洲高清免费观看 | 免费高清在线一区| 久久99久久99小草精品免视看| 久久成人免费网| 国产suv精品一区二区883| 成人激情动漫在线观看| 91在线免费看| 欧美日韩国产欧美日美国产精品| 欧美精品一级二级三级| 欧美大肚乱孕交hd孕妇| 国产视频视频一区| 亚洲精品视频一区| 日韩精品五月天| 国产精品一区二区你懂的| av在线播放成人| 欧美日韩1区2区| 久久众筹精品私拍模特| 1区2区3区精品视频| 午夜激情久久久| 国产一区美女在线| 91小宝寻花一区二区三区| 欧美日韩国产综合一区二区三区| 91精品福利在线一区二区三区| 99久久婷婷国产综合精品| 欧美色图激情小说| 精品国产伦一区二区三区观看方式 | 色综合久久久久久久| 91免费精品国自产拍在线不卡| 欧美亚洲愉拍一区二区| 日韩精品一区二| 中文字幕一区二区三区在线不卡 | 成人免费看视频| 欧美三级电影一区| 国产亚洲污的网站| 香蕉久久一区二区不卡无毒影院 | 精品av久久707| 久久免费视频一区| 亚洲综合av网| 国产麻豆精品久久一二三| 97精品国产97久久久久久久久久久久| 欧美日韩另类一区| 国产欧美1区2区3区| 石原莉奈一区二区三区在线观看 | 日韩精品一区二区三区在线播放| 自拍av一区二区三区| 国内精品久久久久影院薰衣草| 在线一区二区三区四区五区| www一区二区| 偷拍日韩校园综合在线| 成人av电影在线播放| 日韩欧美一级二级三级久久久 | 欧美成人官网二区| 一个色在线综合| 成人激情动漫在线观看| 日韩免费高清视频| 亚洲成av人片一区二区三区| 91在线观看一区二区| 久久久久久麻豆| 美脚の诱脚舐め脚责91 | 91视视频在线观看入口直接观看www| 日韩片之四级片| 丝袜美腿亚洲一区| 欧美在线|欧美| 亚洲欧美另类图片小说| 成人丝袜高跟foot| 国产亚洲欧美在线| 国产呦精品一区二区三区网站| 日韩一级二级三级精品视频| 午夜电影久久久| 欧美午夜影院一区|