亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? setox.s

?? Vxworks OS source code
?? S
?? 第 1 頁 / 共 2 頁
字號:
/* setox.s - Motorola 68040 FP exponential routines (EXC) *//* Copyright 1991-1993 Wind River Systems, Inc. */	.data	.globl	_copyright_wind_river	.long	_copyright_wind_river/*modification history--------------------01f,12nov94,dvs  fixed clearcase conversion search/replace errors.01e,21jul93,kdl  added .text (SPR #2372).01d,23aug92,jcf  changed bxxx to jxx.01c,26may92,rrr  the tree shuffle01b,10jan92,kdl  added modification history; general cleanup.01a,15aug91,kdl  original version, from Motorola FPSP v2.0.*//*DESCRIPTION	setoxsa 3.1 12/10/90	The entry point __x_setox computes the exponential of a value.	__x_setoxd does the same except the input value is a denormalized	number.	__x_setoxm1 computes exp(X)-1, and __x_setoxm1d computes	exp(X)-1 for denormalized X.	INPUT	-----	Double-extended value in memory location pointed to by address	register a0.	OUTPUT	------	exp(X) or exp(X)-1 returned in floating-point register fp0.	ACCURACY and MONOTONICITY	-------------------------	The returned result is within 0.85 ulps in 64 significant bit, i.e.	within 0.5001 ulp to 53 bits if the result is subsequently rounded	to double precision. The result is provably monotonic in double	precision.	SPEED	-----	Two timings are measured, both in the copy-back mode. The	first one is measured when the function is invoked the first time	(so the instructions and data are not in cache), and the	second one is measured when the function is reinvoked at the same	input argument.	The program __x_setox takes approximately 210/190 cycles for input	argument X whose magnitude is less than 16380 log2, which	is the usual situation.	For the less common arguments,	depending on their values, the program may run faster or slower --	but no worse than 10 slower even in the extreme cases.	The program __x_setoxm1 takes approximately ???/??? cycles for input	argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes	approximately ???/??? cycles. For the less common arguments,	depending on their values, the program may run faster or slower --	but no worse than 10 slower even in the extreme cases.	ALGORITHM and IMPLEMENTATION NOTES	----------------------------------	__x_setoxd	------	Step 1.	Set ans := 1.0	Step 2.	Return	ans := ans + sign(X)*2^(-126). Exit.	Notes:	This will always generate one exception -- inexact.	__x_setox	-----	Step 1.	Filter out extreme cases of input argument.		1.1	If |X| >= 2^(-65), go to Step 1.3.		1.2	Go to Step 7.		1.3	If |X| < 16380 log(2), go to Step 2.		1.4	Go to Step 8.	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.		 To avoid the use of floating-point comparisons, a		 compact representation of |X| is used. This format is a		 32-bit integer, the upper (more significant) 16 bits are		 the sign and biased exponent field of |X||  the lower 16		 bits are the 16 most significant fraction (including the		 explicit bit) bits of |X|. Consequently, the comparisons		 in Steps 1.1 and 1.3 can be performed by integer comparison.		 Note also that the constant 16380 log(2) used in Step 1.3		 is also in the compact form. Thus taking the branch		 to Step 2 guarantees |X| < 16380 log(2). There is no harm		 to have a small number of cases where |X| is less than,		 but close to, 16380 log(2) and the branch to Step 9 is		 taken.	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).		2.1	Set AdjFlag := 0 (indicates the branch 1.3 -> 2			was taken)		2.2	N := round-to-nearest-integer( X * 64/log2 ).		2.3	Calculate	J = N mod 64|  so J = 0,1,2,..., or 63.		2.4	Calculate	M = (N - J)/64|  so N = 64M + J.		2.5	Calculate the address of the stored value of 2^(J/64).		2.6	Create the value Scale = 2^M.	Notes:	The calculation in 2.2 is really performed by			Z := X * constant			N := round-to-nearest-integer(Z)		 where			constant := single-precision( 64/log 2 ).		 Using a single-precision constant avoids memory access.		 Another effect of using a single-precision "constant" is		 that the calculated value Z is			Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).		 This error has to be considered later in Steps 3 and 4.	Step 3.	Calculate X - N*log2/64.		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).	Notes:	a) The way L1 and L2 are chosen ensures L1+L2 approximate		 the value	-log2/64	to 88 bits of accuracy.		 b) N*L1 is exact because N is no longer than 22 bits and		 L1 is no longer than 24 bits.		 c) The calculation X+N*L1 is also exact due to cancellation.		 Thus, R is practically X+N(L1+L2) to full 64 bits.		 d) It is important to estimate how large can |R| be after		 Step 3.2.			N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)			X*64/log2 (1+eps)	=	N + f,	|f| <= 0.5			X*64/log2 - N	=	f - eps*X 64/log2			X - N*log2/64	=	f*log2/64 - eps*X		 Now |X| <= 16446 log2, thus			|X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64					<= 0.57 log2/64.		 This bound will be used in Step 4.	Step 4.	Approximate exp(R)-1 by a polynomial			p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: A1 (which is 1/2), A4 and A5		 are single precision|  A2 and A3 are double precision.		 b) Even with the restrictions above,			|p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.		 Note that 0.0062 is slightly bigger than 0.57 log2/64.		 c) To fully utilize the pipeline, p is separated into		 two independent pieces of roughly equal complexities			p = [ R + R*S*(A2 + S*A4) ]	+				[ S*(A1 + S*(A3 + S*A5)) ]		 where S = R*R.	Step 5.	Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by				ans := T + ( T*p + t)		 where T and t are the stored values for 2^(J/64).	Notes:	2^(J/64) is stored as T and t where T+t approximates		 2^(J/64) to roughly 85 bits|  T is in extended precision		 and t is in single precision. Note also that T is rounded		 to 62 bits so that the last two bits of T are zero. The		 reason for such a special form is that T-1, T-2, and T-8		 will all be exact --- a property that will give much		 more accurate computation of the function EXPM1.	Step 6.	Reconstruction of exp(X)			exp(X) = 2^M * 2^(J/64) * exp(R).		6.1	If AdjFlag = 0, go to 6.3		6.2	ans := ans * AdjScale		6.3	Restore the user fpcr		6.4	Return ans := ans * Scale. Exit.	Notes:	If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,		 |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will		 neither overflow nor underflow. If AdjFlag = 1, that		 means that			X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.		 Hence, exp(X) may overflow or underflow or neither.		 When that is the case, AdjScale = 2^(M1) where M1 is		 approximately M. Thus 6.2 will never cause over/underflow.		 Possible exception in 6.4 is overflow or underflow.		 The inexact exception is not generated in 6.4. Although		 one can argue that the inexact flag should always be		 raised, to simulate that exception cost to much than the		 flag is worth in practical uses.	Step 7.	Return 1 + X.		7.1	ans := X		7.2	Restore user fpcr.		7.3	Return ans := 1 + ans. Exit	Notes:	For non-zero X, the inexact exception will always be		 raised by 7.3. That is the only exception raised by 7.3.		 Note also that we use the FMOVEM instruction to move X		 in Step 7.1 to avoid unnecessary trapping. (Although		 the FMOVEM may not seem relevant since X is normalized,		 the precaution will be useful in the library version of		 this code where the separate entry for denormalized inputs		 will be done away with.)	Step 8.	Handle exp(X) where |X| >= 16380log2.		8.1	If |X| > 16480 log2, go to Step 9.		(mimic 2.2 - 2.6)		8.2	N := round-to-integer( X * 64/log2 )		8.3	Calculate J = N mod 64, J = 0,1,...,63		8.4	K := (N-J)/64, M1 := truncate(K/2), M = K-M1,			AdjFlag := 1.		8.5	Calculate the address of the stored value 2^(J/64).		8.6	Create the values Scale = 2^M, AdjScale = 2^M1.		8.7	Go to Step 3.	Notes:	Refer to notes for 2.2 - 2.6.	Step 9.	Handle exp(X), |X| > 16480 log2.		9.1	If X < 0, go to 9.3		9.2	ans := Huge, go to 9.4		9.3	ans := Tiny.		9.4	Restore user fpcr.		9.5	Return ans := ans * ans. Exit.	Notes:	Exp(X) will surely overflow or underflow, depending on		 X's sign. "Huge" and "Tiny" are respectively large/tiny		 extended-precision numbers whose square over/underflow		 with an inexact result. Thus, 9.5 always raises the		 inexact together with either overflow or underflow.	__x_setoxm1d	--------	Step 1.	Set ans := 0	Step 2.	Return	ans := X + ans. Exit.	Notes:	This will return X with the appropriate rounding		 precision prescribed by the user fpcr.	__x_setoxm1	-------	Step 1.	Check |X|		1.1	If |X| >= 1/4, go to Step 1.3.		1.2	Go to Step 7.		1.3	If |X| < 70 log(2), go to Step 2.		1.4	Go to Step 10.	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.		 However, it is conceivable |X| can be small very often		 because EXPM1 is intended to evaluate exp(X)-1 accurately		 when |X| is small. For further details on the comparisons,		 see the notes on Step 1 of __x_setox.	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).		2.1	N := round-to-nearest-integer( X * 64/log2 ).		2.2	Calculate	J = N mod 64|  so J = 0,1,2,..., or 63.		2.3	Calculate	M = (N - J)/64|  so N = 64M + J.		2.4	Calculate the address of the stored value of 2^(J/64).		2.5	Create the values Sc = 2^M and OnebySc := -2^(-M).	Notes:	See the notes on Step 2 of __x_setox.	Step 3.	Calculate X - N*log2/64.		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).	Notes:	Applying the analysis of Step 3 of __x_setox in this case		 shows that |R| <= 0.0055 (note that |X| <= 70 log2 in		 this case).	Step 4.	Approximate exp(R)-1 by a polynomial			p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: A1 (which is 1/2), A5 and A6		 are single precision|  A2, A3 and A4 are double precision.		 b) Even with the restriction above,			|p - (exp(R)-1)| <	|R| * 2^(-72.7)		 for all |R| <= 0.0055.		 c) To fully utilize the pipeline, p is separated into		 two independent pieces of roughly equal complexity			p = [ R*S*(A2 + S*(A4 + S*A6)) ]	+				[ R + S*(A1 + S*(A3 + S*A5)) ]		 where S = R*R.	Step 5.	Compute 2^(J/64)*p by				p := T*p		 where T and t are the stored values for 2^(J/64).	Notes:	2^(J/64) is stored as T and t where T+t approximates		 2^(J/64) to roughly 85 bits|  T is in extended precision		 and t is in single precision. Note also that T is rounded		 to 62 bits so that the last two bits of T are zero. The		 reason for such a special form is that T-1, T-2, and T-8		 will all be exact --- a property that will be exploited		 in Step 6 below. The total relative error in p is no		 bigger than 2^(-67.7) compared to the final result.	Step 6.	Reconstruction of exp(X)-1			exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).		6.1	If M <= 63, go to Step 6.3.		6.2	ans := T + (p + (t + OnebySc)). Go to 6.6		6.3	If M >= -3, go to 6.5.		6.4	ans := (T + (p + t)) + OnebySc. Go to 6.6		6.5	ans := (T + OnebySc) + (p + t).		6.6	Restore user fpcr.		6.7	Return ans := Sc * ans. Exit.	Notes:	The various arrangements of the expressions give accurate		 evaluations.	Step 7.	exp(X)-1 for |X| < 1/4.		7.1	If |X| >= 2^(-65), go to Step 9.		7.2	Go to Step 8.	Step 8.	Calculate exp(X)-1, |X| < 2^(-65).		8.1	If |X| < 2^(-16312), goto 8.3		8.2	Restore fpcr|  return ans := X - 2^(-16382). Exit.		8.3	X := X * 2^(140).		8.4	Restore fpcr|  ans := ans - 2^(-16382).		 Return ans := ans*2^(140). Exit	Notes:	The idea is to return "X - tiny" under the user		 precision and rounding modes. To avoid unnecessary		 inefficiency, we stay away from denormalized numbers the		 best we can. For |X| >= 2^(-16312), the straightforward		 8.2 generates the inexact exception as the case warrants.	Step 9.	Calculate exp(X)-1, |X| < 1/4, by a polynomial			p = X + X*X*(B1 + X*(B2 + |... + X*B12))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: B1 (which is 1/2), B9 to B12		 are single precision|  B3 to B8 are double precision|  and		 B2 is double extended.		 b) Even with the restriction above,			|p - (exp(X)-1)| < |X| 2^(-70.6)		 for all |X| <= 0.251.		 Note that 0.251 is slightly bigger than 1/4.		 c) To fully preserve accuracy, the polynomial is computed		 as	X + ( S*B1 +	Q ) where S = X*X and			Q	=	X*S*(B2 + X*(B3 + |... + X*B12))		 d) To fully utilize the pipeline, Q is separated into		 two independent pieces of roughly equal complexity			Q = [ X*S*(B2 + S*(B4 + |... + S*B12)) ] +				[ S*S*(B3 + S*(B5 + |... + S*B11)) ]	Step 10.	Calculate exp(X)-1 for |X| >= 70 log 2.		10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical		 purposes. Therefore, go to Step 1 of __x_setox.		10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.		 ans := -1		 Restore user fpcr		 Return ans := ans + 2^(-126). Exit.	Notes:	10.2 will always create an inexact and return -1 + tiny		 in the user rounding precision and mode.		Copyright (C) Motorola, Inc. 1990			All Rights Reserved	THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA	The copyright notice above does not evidence any	actual or intended publication of such source code.__x_setox	IDNT	2,1 Motorola 040 Floating Point Software Package	section	8NOMANUAL*/#include "fpsp040E.h"L2:	.long	0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000EXPA3:	.long	0x3FA55555,0x55554431EXPA2:	.long	0x3FC55555,0x55554018HUGE:	.long	0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000TINY:	.long	0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000EM1A4:	.long	0x3F811111,0x11174385EM1A3:	.long	0x3FA55555,0x55554F5AEM1A2:	.long	0x3FC55555,0x55555555,0x00000000,0x00000000EM1B8:	.long	0x3EC71DE3,0xA5774682EM1B7:	.long	0x3EFA01A0,0x19D7CB68EM1B6:	.long	0x3F2A01A0,0x1A019DF3EM1B5:	.long	0x3F56C16C,0x16C170E2EM1B4:	.long	0x3F811111,0x11111111EM1B3:	.long	0x3FA55555,0x55555555EM1B2:	.long	0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB	.long	0x00000000TWO140:	.long	0x48B00000,0x00000000TWON140:	.long	0x37300000,0x00000000EXPTBL:	.long	0x3FFF0000,0x80000000,0x00000000,0x00000000	.long	0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B	.long	0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9	.long	0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369	.long	0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C	.long	0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F	.long	0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729	.long	0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF	.long	0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF	.long	0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA	.long	0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051	.long	0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029	.long	0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494	.long	0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0	.long	0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D	.long	0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537	.long	0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD	.long	0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087	.long	0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818	.long	0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D	.long	0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890	.long	0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C	.long	0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05	.long	0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126	.long	0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140	.long	0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA	.long	0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A	.long	0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC	.long	0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC	.long	0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610	.long	0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90	.long	0x3FFF0000,0xB311C412,0xA9112488,0x201F678A	.long	0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13	.long	0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30	.long	0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC	.long	0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6	.long	0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70	.long	0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518	.long	0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41	.long	0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B	.long	0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568	.long	0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E	.long	0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03	.long	0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D	.long	0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4	.long	0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C	.long	0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9	.long	0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21	.long	0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F	.long	0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美性感一类影片在线播放| 精品久久久久久久久久久院品网 | 久久久久久久免费视频了| 久久国产婷婷国产香蕉| 亚洲成人福利片| 一区二区三区在线观看国产| 国产精品美女www爽爽爽| 亚洲国产精品成人久久综合一区| 欧美一区永久视频免费观看| 91精品国产福利在线观看| 欧美理论片在线| 欧美日韩视频不卡| 日韩欧美国产小视频| 26uuu精品一区二区三区四区在线| 日韩一区二区精品| 久久综合色之久久综合| 国产人久久人人人人爽| 国产精品伦一区| 艳妇臀荡乳欲伦亚洲一区| 亚洲成av人**亚洲成av**| 五月婷婷综合在线| 国产一区视频网站| 成人av免费观看| 欧美日韩午夜影院| 日韩一区二区视频在线观看| 国产午夜精品一区二区三区视频| 欧美激情一区二区三区四区| 伊人婷婷欧美激情| 日韩和欧美的一区| 成人av电影在线| 大陆成人av片| 欧美男男青年gay1069videost | 91久久免费观看| 日韩欧美自拍偷拍| 国产精品三级在线观看| 亚洲mv大片欧洲mv大片精品| 国产乱淫av一区二区三区| 99re热这里只有精品免费视频| 欧美三级电影网| 国产日韩成人精品| 亚洲.国产.中文慕字在线| 国产精品资源站在线| 欧美视频三区在线播放| 国产日韩一级二级三级| 亚洲成人免费视| 国产91精品一区二区麻豆亚洲| 欧美唯美清纯偷拍| 久久精品人人爽人人爽| 亚洲午夜精品17c| 成人激情校园春色| 日韩精品最新网址| 亚洲一卡二卡三卡四卡五卡| 国产91精品久久久久久久网曝门| 91精品在线麻豆| 亚洲综合一区在线| 成人午夜在线播放| 久久久久亚洲综合| 捆绑变态av一区二区三区| 欧美三级资源在线| 亚洲色欲色欲www| 国产成人亚洲综合a∨婷婷| 欧美日本一区二区在线观看| 亚洲欧美电影院| 高清免费成人av| 精品电影一区二区三区| 免费高清成人在线| 欧美日韩国产成人在线91| 亚洲免费av在线| av电影在线观看一区| 裸体健美xxxx欧美裸体表演| 欧美在线一二三| 欧美大度的电影原声| 一区二区三区精品久久久| 成人av电影在线播放| 国产精品美女久久久久久久久久久| 男女男精品视频| 欧美精三区欧美精三区| 亚洲一区二区在线播放相泽| 色88888久久久久久影院按摩 | 99久久er热在这里只有精品15| www久久精品| 国产成人精品亚洲777人妖 | 亚洲综合色自拍一区| www.av精品| 亚洲视频小说图片| 一本到不卡免费一区二区| 亚洲激情第一区| 色综合久久88色综合天天6| 亚洲日本丝袜连裤袜办公室| 在线精品视频一区二区| 夜夜嗨av一区二区三区四季av| 精品1区2区3区| 免费亚洲电影在线| 欧美精品一区二区不卡| jvid福利写真一区二区三区| 亚洲欧洲日韩女同| 欧美中文字幕一区二区三区亚洲| 午夜精品一区在线观看| 日韩三级免费观看| 丁香婷婷深情五月亚洲| 亚洲影院免费观看| 日韩三级电影网址| 99re成人精品视频| 亚洲成av人影院在线观看网| 日韩天堂在线观看| 成人激情免费电影网址| 亚洲国产视频一区二区| 欧美成人精品高清在线播放| 国产成人久久精品77777最新版本| ...xxx性欧美| 日韩一区二区三区三四区视频在线观看| 精品一区二区综合| 中文字幕制服丝袜成人av| 欧美日韩国产经典色站一区二区三区| 久国产精品韩国三级视频| 亚洲日本va在线观看| 欧美一区二区三区婷婷月色| 99久久精品费精品国产一区二区| 蜜臀av在线播放一区二区三区| 国产精品国产精品国产专区不蜜| 欧美精品日韩一本| 99精品偷自拍| 国产乱码字幕精品高清av| 午夜一区二区三区视频| 国产目拍亚洲精品99久久精品| 色综合天天性综合| 久久国产精品第一页| 伊人开心综合网| 国产性做久久久久久| 91精品国产福利| 色综合久久88色综合天天6| 国产激情91久久精品导航| 日本视频一区二区三区| 日韩码欧中文字| 日韩午夜av电影| 8v天堂国产在线一区二区| 色综合久久99| 国产成人精品亚洲日本在线桃色 | 99久久精品情趣| 国产在线国偷精品免费看| 亚洲精品成人天堂一二三| 国产欧美精品日韩区二区麻豆天美| 777色狠狠一区二区三区| 91久久精品网| 成人高清免费观看| 丁香六月综合激情| 成人免费三级在线| 国产馆精品极品| 国产精品 欧美精品| 国产乱子轮精品视频| 狠狠色综合色综合网络| 开心九九激情九九欧美日韩精美视频电影 | 99免费精品在线| 国产成人精品免费| 丁香婷婷深情五月亚洲| 成人国产一区二区三区精品| 成人免费的视频| 99国产精品99久久久久久| 99久久婷婷国产精品综合| 91玉足脚交白嫩脚丫在线播放| 99久久99久久免费精品蜜臀| 97久久精品人人爽人人爽蜜臀| www.亚洲国产| 色婷婷亚洲精品| 欧美色图激情小说| 日韩午夜中文字幕| 久久久久久久久久久99999| 国产欧美一区二区精品仙草咪| 久久久三级国产网站| 国产欧美久久久精品影院| 亚洲人成网站精品片在线观看| 亚洲欧美日韩中文播放 | 91精品视频网| 精品少妇一区二区| 国产欧美日韩在线看| 亚洲图片激情小说| 石原莉奈在线亚洲三区| 国产中文一区二区三区| 成人午夜精品一区二区三区| 日本国产一区二区| 8x8x8国产精品| 国产精品天干天干在线综合| 一二三四社区欧美黄| 麻豆久久一区二区| 成人美女在线视频| 欧美高清视频不卡网| 国产日产欧美一区二区视频| 亚洲综合色噜噜狠狠| 久久国产婷婷国产香蕉| eeuss鲁片一区二区三区在线观看| 色婷婷综合久久久久中文| 欧美va日韩va| 91小视频在线| 欧美变态tickling挠脚心| 亚洲日本乱码在线观看| 国产一区二区三区在线看麻豆| 在线一区二区三区四区五区| 精品国产乱码久久| 夜夜嗨av一区二区三区中文字幕| 国产精品一区在线|