亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? l_setox.s

?? Vxworks OS source code
?? S
?? 第 1 頁 / 共 2 頁
字號:
/* l_setox.s - Motorola 68040 FP exponential routines (LIB) *//* Copyright 1991-1993 Wind River Systems, Inc. */	.data	.globl	_copyright_wind_river	.long	_copyright_wind_river/*modification history--------------------01f,12nov94,dvs  fixed clearcase conversion search/replace errors.01e,21jul93,kdl  added .text (SPR #2372).01d,23aug92,jcf  changed bxxx to jxx.01c,26may92,rrr  the tree shuffle01b,09jan92,kdl  added modification history; general cleanup.01a,15aug91,kdl  original version, from Motorola FPSP v2.0.*//*DESCRIPTION	setoxsa 3.1 12/10/90	The entry point __l_setox computes the exponential of a value.	__l_setoxd does the same except the input value is a denormalized	number.	__l_setoxm1 computes exp(X)-1, and __l_setoxm1d computes	exp(X)-1 for denormalized X.	INPUT	-----	Double-extended value in memory location pointed to by address	register a0.	OUTPUT	------	exp(X) or exp(X)-1 returned in floating-point register fp0.	ACCURACY and MONOTONICITY	-------------------------	The returned result is within 0.85 ulps in 64 significant bit, i.e.	within 0.5001 ulp to 53 bits if the result is subsequently rounded	to double precision. The result is provably monotonic in double	precision.	SPEED	-----	Two timings are measured, both in the copy-back mode. The	first one is measured when the function is invoked the first time	(so the instructions and data are not in cache), and the	second one is measured when the function is reinvoked at the same	input argument.	The program __l_setox takes approximately 210/190 cycles for input	argument X whose magnitude is less than 16380 log2, which	is the usual situation.	For the less common arguments,	depending on their values, the program may run faster or slower --	but no worse than 10 slower even in the extreme cases.	The program __l_setoxm1 takes approximately ???/??? cycles for input	argument X, 0.25 <= |X| < 70log2. For |X| < 0.25, it takes	approximately ???/??? cycles. For the less common arguments,	depending on their values, the program may run faster or slower --	but no worse than 10 slower even in the extreme cases.	ALGORITHM and IMPLEMENTATION NOTES	----------------------------------	__l_setoxd	------	Step 1.	Set ans := 1.0	Step 2.	Return	ans := ans + sign(X)*2^(-126). Exit.	Notes:	This will always generate one exception -- inexact.	__l_setox	-----	Step 1.	Filter out extreme cases of input argument.		1.1	If |X| >= 2^(-65), go to Step 1.3.		1.2	Go to Step 7.		1.3	If |X| < 16380 log(2), go to Step 2.		1.4	Go to Step 8.	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.		 To avoid the use of floating-point comparisons, a		 compact representation of |X| is used. This format is a		 32-bit integer, the upper (more significant) 16 bits are		 the sign and biased exponent field of |X||  the lower 16		 bits are the 16 most significant fraction (including the		 explicit bit) bits of |X|. Consequently, the comparisons		 in Steps 1.1 and 1.3 can be performed by integer comparison.		 Note also that the constant 16380 log(2) used in Step 1.3		 is also in the compact form. Thus taking the branch		 to Step 2 guarantees |X| < 16380 log(2). There is no harm		 to have a small number of cases where |X| is less than,		 but close to, 16380 log(2) and the branch to Step 9 is		 taken.	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).		2.1	Set AdjFlag := 0 (indicates the branch 1.3 -> 2 was taken)		2.2	N := round-to-nearest-integer( X * 64/log2 ).		2.3	Calculate	J = N mod 64|  so J = 0,1,2,..., or 63.		2.4	Calculate	M = (N - J)/64|  so N = 64M + J.		2.5	Calculate the address of the stored value of 2^(J/64).		2.6	Create the value Scale = 2^M.	Notes:	The calculation in 2.2 is really performed by			Z := X * constant			N := round-to-nearest-integer(Z)		 where			constant := single-precision( 64/log 2 ).		 Using a single-precision constant avoids memory access.		 Another effect of using a single-precision "constant" is		 that the calculated value Z is			Z = X*(64/log2)*(1+eps), |eps| <= 2^(-24).		 This error has to be considered later in Steps 3 and 4.	Step 3.	Calculate X - N*log2/64.		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).	Notes:	a) The way L1 and L2 are chosen ensures L1+L2 approximate		 the value	-log2/64	to 88 bits of accuracy.		 b) N*L1 is exact because N is no longer than 22 bits and		 L1 is no longer than 24 bits.		 c) The calculation X+N*L1 is also exact due to cancellation.		 Thus, R is practically X+N(L1+L2) to full 64 bits.		 d) It is important to estimate how large can |R| be after		 Step 3.2.			N = rnd-to-int( X*64/log2 (1+eps) ), |eps|<=2^(-24)			X*64/log2 (1+eps)	=	N + f,	|f| <= 0.5			X*64/log2 - N	=	f - eps*X 64/log2			X - N*log2/64	=	f*log2/64 - eps*X		 Now |X| <= 16446 log2, thus			|X - N*log2/64| <= (0.5 + 16446/2^(18))*log2/64					<= 0.57 log2/64.		 This bound will be used in Step 4.	Step 4.	Approximate exp(R)-1 by a polynomial			p = R + R*R*(A1 + R*(A2 + R*(A3 + R*(A4 + R*A5))))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: A1 (which is 1/2), A4 and A5		 are single precision|  A2 and A3 are double precision.		 b) Even with the restrictions above,			|p - (exp(R)-1)| < 2^(-68.8) for all |R| <= 0.0062.		 Note that 0.0062 is slightly bigger than 0.57 log2/64.		 c) To fully utilize the pipeline, p is separated into		 two independent pieces of roughly equal complexities			p = [ R + R*S*(A2 + S*A4) ]	+				[ S*(A1 + S*(A3 + S*A5)) ]		 where S = R*R.	Step 5.	Compute 2^(J/64)*exp(R) = 2^(J/64)*(1+p) by				ans := T + ( T*p + t)		 where T and t are the stored values for 2^(J/64).	Notes:	2^(J/64) is stored as T and t where T+t approximates		 2^(J/64) to roughly 85 bits|  T is in extended precision		 and t is in single precision. Note also that T is rounded		 to 62 bits so that the last two bits of T are zero. The		 reason for such a special form is that T-1, T-2, and T-8		 will all be exact --- a property that will give much		 more accurate computation of the function EXPM1.	Step 6.	Reconstruction of exp(X)			exp(X) = 2^M * 2^(J/64) * exp(R).		6.1	If AdjFlag = 0, go to 6.3		6.2	ans := ans * AdjScale		6.3	Restore the user fpcr		6.4	Return ans := ans * Scale. Exit.	Notes:	If AdjFlag = 0, we have X = Mlog2 + Jlog2/64 + R,		 |M| <= 16380, and Scale = 2^M. Moreover, exp(X) will		 neither overflow nor underflow. If AdjFlag = 1, that		 means that			X = (M1+M)log2 + Jlog2/64 + R, |M1+M| >= 16380.		 Hence, exp(X) may overflow or underflow or neither.		 When that is the case, AdjScale = 2^(M1) where M1 is		 approximately M. Thus 6.2 will never cause over/underflow.		 Possible exception in 6.4 is overflow or underflow.		 The inexact exception is not generated in 6.4. Although		 one can argue that the inexact flag should always be		 raised, to simulate that exception cost to much than the		 flag is worth in practical uses.	Step 7.	Return 1 + X.		7.1	ans := X		7.2	Restore user fpcr.		7.3	Return ans := 1 + ans. Exit	Notes:	For non-zero X, the inexact exception will always be		 raised by 7.3. That is the only exception raised by 7.3.		 Note also that we use the FMOVEM instruction to move X		 in Step 7.1 to avoid unnecessary trapping. (Although		 the FMOVEM may not seem relevant since X is normalized,		 the precaution will be useful in the library version of		 this code where the separate entry for denormalized inputs		 will be done away with.)	Step 8.	Handle exp(X) where |X| >= 16380log2.		8.1	If |X| > 16480 log2, go to Step 9.		(mimic 2.2 - 2.6)		8.2	N := round-to-integer( X * 64/log2 )		8.3	Calculate J = N mod 64, J = 0,1,...,63		8.4	K := (N-J)/64, M1 := truncate(K/2), M = K-M1, AdjFlag := 1.		8.5	Calculate the address of the stored value 2^(J/64).		8.6	Create the values Scale = 2^M, AdjScale = 2^M1.		8.7	Go to Step 3.	Notes:	Refer to notes for 2.2 - 2.6.	Step 9.	Handle exp(X), |X| > 16480 log2.		9.1	If X < 0, go to 9.3		9.2	ans := Huge, go to 9.4		9.3	ans := Tiny.		9.4	Restore user fpcr.		9.5	Return ans := ans * ans. Exit.	Notes:	Exp(X) will surely overflow or underflow, depending on		 X's sign. "Huge" and "Tiny" are respectively large/tiny		 extended-precision numbers whose square over/underflow		 with an inexact result. Thus, 9.5 always raises the		 inexact together with either overflow or underflow.	__l_setoxm1d	--------	Step 1.	Set ans := 0	Step 2.	Return	ans := X + ans. Exit.	Notes:	This will return X with the appropriate rounding		 precision prescribed by the user fpcr.	__l_setoxm1	-------	Step 1.	Check |X|		1.1	If |X| >= 1/4, go to Step 1.3.		1.2	Go to Step 7.		1.3	If |X| < 70 log(2), go to Step 2.		1.4	Go to Step 10.	Notes:	The usual case should take the branches 1.1 -> 1.3 -> 2.		 However, it is conceivable |X| can be small very often		 because EXPM1 is intended to evaluate exp(X)-1 accurately		 when |X| is small. For further details on the comparisons,		 see the notes on Step 1 of __l_setox.	Step 2.	Calculate N = round-to-nearest-int( X * 64/log2 ).		2.1	N := round-to-nearest-integer( X * 64/log2 ).		2.2	Calculate	J = N mod 64|  so J = 0,1,2,..., or 63.		2.3	Calculate	M = (N - J)/64|  so N = 64M + J.		2.4	Calculate the address of the stored value of 2^(J/64).		2.5	Create the values Sc = 2^M and OnebySc := -2^(-M).	Notes:	See the notes on Step 2 of __l_setox.	Step 3.	Calculate X - N*log2/64.		3.1	R := X + N*L1, where L1 := single-precision(-log2/64).		3.2	R := R + N*L2, L2 := extended-precision(-log2/64 - L1).	Notes:	Applying the analysis of Step 3 of __l_setox in this case		 shows that |R| <= 0.0055 (note that |X| <= 70 log2 in		 this case).	Step 4.	Approximate exp(R)-1 by a polynomial			p = R+R*R*(A1+R*(A2+R*(A3+R*(A4+R*(A5+R*A6)))))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: A1 (which is 1/2), A5 and A6		 are single precision|  A2, A3 and A4 are double precision.		 b) Even with the restriction above,			|p - (exp(R)-1)| <	|R| * 2^(-72.7)		 for all |R| <= 0.0055.		 c) To fully utilize the pipeline, p is separated into		 two independent pieces of roughly equal complexity			p = [ R*S*(A2 + S*(A4 + S*A6)) ]	+				[ R + S*(A1 + S*(A3 + S*A5)) ]		 where S = R*R.	Step 5.	Compute 2^(J/64)*p by				p := T*p		 where T and t are the stored values for 2^(J/64).	Notes:	2^(J/64) is stored as T and t where T+t approximates		 2^(J/64) to roughly 85 bits|  T is in extended precision		 and t is in single precision. Note also that T is rounded		 to 62 bits so that the last two bits of T are zero. The		 reason for such a special form is that T-1, T-2, and T-8		 will all be exact --- a property that will be exploited		 in Step 6 below. The total relative error in p is no		 bigger than 2^(-67.7) compared to the final result.	Step 6.	Reconstruction of exp(X)-1			exp(X)-1 = 2^M * ( 2^(J/64) + p - 2^(-M) ).		6.1	If M <= 63, go to Step 6.3.		6.2	ans := T + (p + (t + OnebySc)). Go to 6.6		6.3	If M >= -3, go to 6.5.		6.4	ans := (T + (p + t)) + OnebySc. Go to 6.6		6.5	ans := (T + OnebySc) + (p + t).		6.6	Restore user fpcr.		6.7	Return ans := Sc * ans. Exit.	Notes:	The various arrangements of the expressions give accurate		 evaluations.	Step 7.	exp(X)-1 for |X| < 1/4.		7.1	If |X| >= 2^(-65), go to Step 9.		7.2	Go to Step 8.	Step 8.	Calculate exp(X)-1, |X| < 2^(-65).		8.1	If |X| < 2^(-16312), goto 8.3		8.2	Restore fpcr|  return ans := X - 2^(-16382). Exit.		8.3	X := X * 2^(140).		8.4	Restore fpcr|  ans := ans - 2^(-16382).		 Return ans := ans*2^(140). Exit	Notes:	The idea is to return "X - tiny" under the user		 precision and rounding modes. To avoid unnecessary		 inefficiency, we stay away from denormalized numbers the		 best we can. For |X| >= 2^(-16312), the straightforward		 8.2 generates the inexact exception as the case warrants.	Step 9.	Calculate exp(X)-1, |X| < 1/4, by a polynomial			p = X + X*X*(B1 + X*(B2 + |... + X*B12))	Notes:	a) In order to reduce memory access, the coefficients are		 made as "short" as possible: B1 (which is 1/2), B9 to B12		 are single precision|  B3 to B8 are double precision|  and		 B2 is double extended.		 b) Even with the restriction above,			|p - (exp(X)-1)| < |X| 2^(-70.6)		 for all |X| <= 0.251.		 Note that 0.251 is slightly bigger than 1/4.		 c) To fully preserve accuracy, the polynomial is computed		 as	X + ( S*B1 +	Q ) where S = X*X and			Q	=	X*S*(B2 + X*(B3 + |... + X*B12))		 d) To fully utilize the pipeline, Q is separated into		 two independent pieces of roughly equal complexity			Q = [ X*S*(B2 + S*(B4 + |... + S*B12)) ] +				[ S*S*(B3 + S*(B5 + |... + S*B11)) ]	Step 10.	Calculate exp(X)-1 for |X| >= 70 log 2.		10.1 If X >= 70log2 , exp(X) - 1 = exp(X) for all practical		 purposes. Therefore, go to Step 1 of __l_setox.		10.2 If X <= -70log2, exp(X) - 1 = -1 for all practical purposes.		 ans := -1		 Restore user fpcr		 Return ans := ans + 2^(-126). Exit.	Notes:	10.2 will always create an inexact and return -1 + tiny		 in the user rounding precision and mode.		Copyright (C) Motorola, Inc. 1990			All Rights Reserved	THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA	The copyright notice above does not evidence any	actual or intended publication of such source code.__l_setox	IDNT	2,1 Motorola 040 Floating Point Software Package	section	8NOMANUAL*/#include "fpsp040L.h"L2:	.long	0x3FDC0000,0x82E30865,0x4361C4C6,0x00000000EXPA3:	.long	0x3FA55555,0x55554431EXPA2:	.long	0x3FC55555,0x55554018HUGE:	.long	0x7FFE0000,0xFFFFFFFF,0xFFFFFFFF,0x00000000TINY:	.long	0x00010000,0xFFFFFFFF,0xFFFFFFFF,0x00000000EM1A4:	.long	0x3F811111,0x11174385EM1A3:	.long	0x3FA55555,0x55554F5AEM1A2:	.long	0x3FC55555,0x55555555,0x00000000,0x00000000EM1B8:	.long	0x3EC71DE3,0xA5774682EM1B7:	.long	0x3EFA01A0,0x19D7CB68EM1B6:	.long	0x3F2A01A0,0x1A019DF3EM1B5:	.long	0x3F56C16C,0x16C170E2EM1B4:	.long	0x3F811111,0x11111111EM1B3:	.long	0x3FA55555,0x55555555EM1B2:	.long	0x3FFC0000,0xAAAAAAAA,0xAAAAAAAB	.long	0x00000000TWO140:	.long	0x48B00000,0x00000000TWON140:	.long	0x37300000,0x00000000EXPTBL:	.long	0x3FFF0000,0x80000000,0x00000000,0x00000000	.long	0x3FFF0000,0x8164D1F3,0xBC030774,0x9F841A9B	.long	0x3FFF0000,0x82CD8698,0xAC2BA1D8,0x9FC1D5B9	.long	0x3FFF0000,0x843A28C3,0xACDE4048,0xA0728369	.long	0x3FFF0000,0x85AAC367,0xCC487B14,0x1FC5C95C	.long	0x3FFF0000,0x871F6196,0x9E8D1010,0x1EE85C9F	.long	0x3FFF0000,0x88980E80,0x92DA8528,0x9FA20729	.long	0x3FFF0000,0x8A14D575,0x496EFD9C,0xA07BF9AF	.long	0x3FFF0000,0x8B95C1E3,0xEA8BD6E8,0xA0020DCF	.long	0x3FFF0000,0x8D1ADF5B,0x7E5BA9E4,0x205A63DA	.long	0x3FFF0000,0x8EA4398B,0x45CD53C0,0x1EB70051	.long	0x3FFF0000,0x9031DC43,0x1466B1DC,0x1F6EB029	.long	0x3FFF0000,0x91C3D373,0xAB11C338,0xA0781494	.long	0x3FFF0000,0x935A2B2F,0x13E6E92C,0x9EB319B0	.long	0x3FFF0000,0x94F4EFA8,0xFEF70960,0x2017457D	.long	0x3FFF0000,0x96942D37,0x20185A00,0x1F11D537	.long	0x3FFF0000,0x9837F051,0x8DB8A970,0x9FB952DD	.long	0x3FFF0000,0x99E04593,0x20B7FA64,0x1FE43087	.long	0x3FFF0000,0x9B8D39B9,0xD54E5538,0x1FA2A818	.long	0x3FFF0000,0x9D3ED9A7,0x2CFFB750,0x1FDE494D	.long	0x3FFF0000,0x9EF53260,0x91A111AC,0x20504890	.long	0x3FFF0000,0xA0B0510F,0xB9714FC4,0xA073691C	.long	0x3FFF0000,0xA2704303,0x0C496818,0x1F9B7A05	.long	0x3FFF0000,0xA43515AE,0x09E680A0,0xA0797126	.long	0x3FFF0000,0xA5FED6A9,0xB15138EC,0xA071A140	.long	0x3FFF0000,0xA7CD93B4,0xE9653568,0x204F62DA	.long	0x3FFF0000,0xA9A15AB4,0xEA7C0EF8,0x1F283C4A	.long	0x3FFF0000,0xAB7A39B5,0xA93ED338,0x9F9A7FDC	.long	0x3FFF0000,0xAD583EEA,0x42A14AC8,0xA05B3FAC	.long	0x3FFF0000,0xAF3B78AD,0x690A4374,0x1FDF2610	.long	0x3FFF0000,0xB123F581,0xD2AC2590,0x9F705F90	.long	0x3FFF0000,0xB311C412,0xA9112488,0x201F678A	.long	0x3FFF0000,0xB504F333,0xF9DE6484,0x1F32FB13	.long	0x3FFF0000,0xB6FD91E3,0x28D17790,0x20038B30	.long	0x3FFF0000,0xB8FBAF47,0x62FB9EE8,0x200DC3CC	.long	0x3FFF0000,0xBAFF5AB2,0x133E45FC,0x9F8B2AE6	.long	0x3FFF0000,0xBD08A39F,0x580C36C0,0xA02BBF70	.long	0x3FFF0000,0xBF1799B6,0x7A731084,0xA00BF518	.long	0x3FFF0000,0xC12C4CCA,0x66709458,0xA041DD41	.long	0x3FFF0000,0xC346CCDA,0x24976408,0x9FDF137B	.long	0x3FFF0000,0xC5672A11,0x5506DADC,0x201F1568	.long	0x3FFF0000,0xC78D74C8,0xABB9B15C,0x1FC13A2E	.long	0x3FFF0000,0xC9B9BD86,0x6E2F27A4,0xA03F8F03	.long	0x3FFF0000,0xCBEC14FE,0xF2727C5C,0x1FF4907D	.long	0x3FFF0000,0xCE248C15,0x1F8480E4,0x9E6E53E4	.long	0x3FFF0000,0xD06333DA,0xEF2B2594,0x1FD6D45C	.long	0x3FFF0000,0xD2A81D91,0xF12AE45C,0xA076EDB9	.long	0x3FFF0000,0xD4F35AAB,0xCFEDFA20,0x9FA6DE21	.long	0x3FFF0000,0xD744FCCA,0xD69D6AF4,0x1EE69A2F	.long	0x3FFF0000,0xD99D15C2,0x78AFD7B4,0x207F439F	.long	0x3FFF0000,0xDBFBB797,0xDAF23754,0x201EC207

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲视频一二三| 精品少妇一区二区三区在线播放 | 麻豆精品一区二区三区| 欧美欧美欧美欧美| 天堂午夜影视日韩欧美一区二区| 欧美色综合天天久久综合精品| 亚洲亚洲人成综合网络| 欧美在线一二三| 亚洲乱码国产乱码精品精可以看 | 久久久久久久久久久久电影| 国产一区二区三区精品视频| 国产视频视频一区| 91碰在线视频| 亚洲精品亚洲人成人网在线播放| 欧美无砖专区一中文字| 麻豆91在线播放免费| 国产精品免费视频一区| 欧美午夜精品久久久久久超碰| 日韩精品电影一区亚洲| 国产日韩欧美精品在线| 91精品1区2区| 久久99久久精品欧美| 国产精品国产三级国产aⅴ入口 | 成人激情黄色小说| 亚洲综合精品久久| 欧美大胆一级视频| www.成人网.com| 午夜精品成人在线| 亚洲国产精品成人综合 | 成人午夜激情影院| 亚洲国产一区二区三区青草影视| 久久亚洲精品国产精品紫薇| 欧美亚洲动漫精品| 国产精品888| 天天综合色天天| 中文字幕亚洲成人| 日韩午夜激情电影| 色av综合在线| 国产在线精品一区二区不卡了| 亚洲曰韩产成在线| 国产无人区一区二区三区| 欧美三级韩国三级日本一级| 成人激情综合网站| 另类综合日韩欧美亚洲| 亚洲综合在线免费观看| 中文天堂在线一区| 日韩欧美久久久| 欧美亚洲自拍偷拍| 成人小视频在线| 六月丁香婷婷色狠狠久久| 亚洲国产综合91精品麻豆| 国产欧美综合在线观看第十页| 欧美一区二区三区影视| 91免费国产在线观看| 国产不卡视频在线播放| 九九九精品视频| 秋霞午夜av一区二区三区| 亚洲一区二区三区四区在线免费观看| 日本一区二区视频在线观看| 精品少妇一区二区三区在线视频| 欧美精三区欧美精三区| 色88888久久久久久影院野外| 成人午夜电影网站| 国产乱码一区二区三区| 国产一区二区三区免费播放| 久久99久久久久| 青青草97国产精品免费观看 | 久久国产精品免费| 天堂在线一区二区| 亚洲成av人综合在线观看| 国产精品短视频| 中文字幕av不卡| 国产午夜一区二区三区| 26uuu欧美| 久久蜜桃香蕉精品一区二区三区| 日韩欧美的一区| 日韩亚洲欧美综合| 制服丝袜av成人在线看| 欧美久久久久久久久中文字幕| 欧美亚州韩日在线看免费版国语版| 不卡一区中文字幕| 97久久精品人人做人人爽50路| 91视视频在线观看入口直接观看www | 亚洲三级理论片| 国产精品白丝在线| 国产精品乱码一区二区三区软件 | 欧洲视频一区二区| 在线区一区二视频| 欧美日韩亚洲综合一区二区三区 | 麻豆成人久久精品二区三区小说| 天堂精品中文字幕在线| 强制捆绑调教一区二区| 国产一区日韩二区欧美三区| 粗大黑人巨茎大战欧美成人| 91在线无精精品入口| 欧美日韩美女一区二区| 日韩一级黄色片| 国产欧美一区二区三区网站| 一区二区成人在线| 亚洲一区二区不卡免费| 日韩av中文在线观看| 激情另类小说区图片区视频区| 国内成人自拍视频| av电影在线观看完整版一区二区| 欧美性感一类影片在线播放| 日韩一区二区三区在线| 中文在线资源观看网站视频免费不卡| 成人欧美一区二区三区黑人麻豆 | 亚洲综合激情网| 久久国产生活片100| 不卡区在线中文字幕| 欧美日韩精品福利| 精品国产制服丝袜高跟| 中文字幕亚洲精品在线观看| 日韩不卡免费视频| 国产传媒久久文化传媒| 欧美又粗又大又爽| 精品久久久网站| 一区二区三区蜜桃| 韩国女主播一区二区三区| 在线观看www91| www国产精品av| 亚洲综合在线视频| 国内精品视频666| 欧美伊人久久久久久午夜久久久久| 日韩欧美一级二级三级| 亚洲精品第一国产综合野| 免费成人性网站| av不卡免费电影| 精品成人私密视频| 亚洲午夜久久久久中文字幕久| 国产美女在线精品| 在线免费观看日本一区| 国产精品天干天干在线综合| 日本vs亚洲vs韩国一区三区二区 | 国产成a人亚洲精品| 欧美一区二区不卡视频| 亚洲视频小说图片| 国产精品一区专区| 宅男在线国产精品| 亚洲一区在线看| 成人av免费观看| 精品国产乱码久久久久久牛牛| 亚洲va在线va天堂| 色综合色狠狠综合色| 亚洲国产成人一区二区三区| 成人午夜视频福利| 日韩一区二区三| 午夜婷婷国产麻豆精品| 91免费国产视频网站| 国产精品久久久久久久久动漫| 国产一区二区三区视频在线播放| 欧美一级久久久久久久大片| 亚洲成人免费在线| 欧美性猛交一区二区三区精品| 亚洲精品中文在线观看| 99久久综合国产精品| 国产精品第五页| 91在线porny国产在线看| 国产精品精品国产色婷婷| 成人免费毛片app| 国产精品国产馆在线真实露脸| 国产成+人+日韩+欧美+亚洲| 欧美激情中文字幕一区二区| 国产高清不卡一区| 国产午夜精品久久久久久免费视 | 99久久国产综合精品色伊| 亚洲国产激情av| 不卡av在线网| 成人欧美一区二区三区视频网页| av电影天堂一区二区在线| 亚洲欧美另类在线| 91麻豆国产精品久久| 亚洲综合久久av| 欧美日韩精品一区视频| 日韩在线一区二区| 欧美丰满美乳xxx高潮www| 日日骚欧美日韩| 日韩精品专区在线影院观看| 黄页视频在线91| 国产视频一区二区三区在线观看| 大尺度一区二区| 亚洲在线观看免费视频| 欧美绝品在线观看成人午夜影视| 久久黄色级2电影| 国产日韩欧美一区二区三区综合| 成人午夜短视频| 亚洲综合视频在线观看| 欧美一区二区三区播放老司机| 黄网站免费久久| 首页国产欧美久久| 精品久久五月天| 成人午夜伦理影院| 亚洲大片免费看| 2020国产精品自拍| aaa国产一区| 日本一不卡视频| 国产精品久久福利| 欧美精品三级在线观看| 国产精品一区二区久久精品爱涩|