?? tetrahedron_3.h
字號:
// Copyright (c) 2000 Utrecht University (The Netherlands),// ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany),// INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg// (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria),// and Tel-Aviv University (Israel). All rights reserved.//// This file is part of CGAL (www.cgal.org); you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public License as// published by the Free Software Foundation; version 2.1 of the License.// See the file LICENSE.LGPL distributed with CGAL.//// Licensees holding a valid commercial license may use this file in// accordance with the commercial license agreement provided with the software.//// This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE// WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.//// $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.3-branch/Cartesian_kernel/include/CGAL/Cartesian/Tetrahedron_3.h $// $Id: Tetrahedron_3.h 35640 2006-12-27 23:25:47Z spion $// //// Author(s) : Andreas Fabri#ifndef CGAL_CARTESIAN_TETRAHEDRON_3_H#define CGAL_CARTESIAN_TETRAHEDRON_3_H#include <CGAL/Fourtuple.h>#include <CGAL/Handle_for.h>#include <vector>#include <functional>CGAL_BEGIN_NAMESPACEtemplate <class R_>class TetrahedronC3{ typedef typename R_::FT FT; typedef typename R_::Point_3 Point_3; typedef typename R_::Plane_3 Plane_3; typedef typename R_::Tetrahedron_3 Tetrahedron_3; typedef Fourtuple<Point_3> Rep; typedef typename R_::template Handle<Rep>::type Base; Base base;public: typedef R_ R; TetrahedronC3() {} TetrahedronC3(const Point_3 &p, const Point_3 &q, const Point_3 &r, const Point_3 &s) : base(p, q, r, s) {} const Point_3 & vertex(int i) const; const Point_3 & operator[](int i) const; bool operator==(const TetrahedronC3 &t) const; bool operator!=(const TetrahedronC3 &t) const; Orientation orientation() const; Oriented_side oriented_side(const Point_3 &p) const; Bounded_side bounded_side(const Point_3 &p) const; bool has_on_boundary(const Point_3 &p) const; bool has_on_positive_side(const Point_3 &p) const; bool has_on_negative_side(const Point_3 &p) const; bool has_on_bounded_side(const Point_3 &p) const; bool has_on_unbounded_side(const Point_3 &p) const; bool is_degenerate() const;};template < class R >boolTetrahedronC3<R>::operator==(const TetrahedronC3<R> &t) const{ if (CGAL::identical(base, t.base)) return true; if (orientation() != t.orientation()) return false; std::vector< Point_3 > V1; std::vector< Point_3 > V2; typename std::vector< Point_3 >::iterator uniq_end1; typename std::vector< Point_3 >::iterator uniq_end2; int k; for ( k=0; k < 4; k++) V1.push_back( vertex(k)); for ( k=0; k < 4; k++) V2.push_back( t.vertex(k)); typename R::Less_xyz_3 Less_object = R().less_xyz_3_object(); std::sort(V1.begin(), V1.end(), Less_object); std::sort(V2.begin(), V2.end(), Less_object); uniq_end1 = std::unique( V1.begin(), V1.end()); uniq_end2 = std::unique( V2.begin(), V2.end()); V1.erase( uniq_end1, V1.end()); V2.erase( uniq_end2, V2.end()); return V1 == V2;}template < class R >inlineboolTetrahedronC3<R>::operator!=(const TetrahedronC3<R> &t) const{ return !(*this == t);}template < class R >const typename TetrahedronC3<R>::Point_3 &TetrahedronC3<R>::vertex(int i) const{ if (i<0) i=(i%4)+4; else if (i>3) i=i%4; switch (i) { case 0: return get(base).e0; case 1: return get(base).e1; case 2: return get(base).e2; default: return get(base).e3; }}template < class R >inlineconst typename TetrahedronC3<R>::Point_3 &TetrahedronC3<R>::operator[](int i) const{ return vertex(i);}template < class R >OrientationTetrahedronC3<R>::orientation() const{ return R().orientation_3_object()(vertex(0), vertex(1), vertex(2), vertex(3));}template < class R >Oriented_sideTetrahedronC3<R>::oriented_side(const typename TetrahedronC3<R>::Point_3 &p) const{ Orientation o = orientation(); if (o != ZERO) return Oriented_side(o * bounded_side(p)); CGAL_kernel_assertion (!is_degenerate()); return ON_ORIENTED_BOUNDARY;}template < class R >Bounded_sideTetrahedronC3<R>::bounded_side(const typename TetrahedronC3<R>::Point_3 &p) const{ return R().bounded_side_3_object() (static_cast<const typename R::Tetrahedron_3>(*this), p);}template < class R >inlineboolTetrahedronC3<R>::has_on_boundary (const typename TetrahedronC3<R>::Point_3 &p) const{ return oriented_side(p) == ON_ORIENTED_BOUNDARY;}template < class R >inlineboolTetrahedronC3<R>::has_on_positive_side (const typename TetrahedronC3<R>::Point_3 &p) const{ return oriented_side(p) == ON_POSITIVE_SIDE;}template < class R >inlineboolTetrahedronC3<R>::has_on_negative_side (const typename TetrahedronC3<R>::Point_3 &p) const{ return oriented_side(p) == ON_NEGATIVE_SIDE;}template < class R >inlineboolTetrahedronC3<R>::has_on_bounded_side (const typename TetrahedronC3<R>::Point_3 &p) const{ return bounded_side(p) == ON_BOUNDED_SIDE;}template < class R >inlineboolTetrahedronC3<R>::has_on_unbounded_side (const typename TetrahedronC3<R>::Point_3 &p) const{ return bounded_side(p) == ON_UNBOUNDED_SIDE;}template < class R >inlineboolTetrahedronC3<R>::is_degenerate() const{ return orientation() == COPLANAR;}CGAL_END_NAMESPACE#endif // CGAL_CARTESIAN_TETRAHEDRON_3_H
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -