?? jidct.c
字號:
#define JPEG_INTERNALS#include "jpeglib.h"#include "jdct.h" /* Private declarations for DCT subsystem */#if BITS_IN_JSAMPLE == 8#define CONST_BITS 8#define PASS1_BITS 2#else#define CONST_BITS 8#define PASS1_BITS 1 /* lose a little precision to avoid overflow */#endif#if CONST_BITS == 8#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */#else#define FIX_1_082392200 FIX(1.082392200)#define FIX_1_414213562 FIX(1.414213562)#define FIX_1_847759065 FIX(1.847759065)#define FIX_2_613125930 FIX(2.613125930)#endif#if CONST_BITS == 13#define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */#define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */#define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */#define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */#define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */#define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */#define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */#define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */#define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */#define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */#define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */#define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */#define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */#define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */#else#define FIX_0_211164243 FIX(0.211164243)#define FIX_0_509795579 FIX(0.509795579)#define FIX_0_601344887 FIX(0.601344887)#define FIX_0_720959822 FIX(0.720959822)#define FIX_0_765366865 FIX(0.765366865)#define FIX_0_850430095 FIX(0.850430095)#define FIX_0_899976223 FIX(0.899976223)#define FIX_1_061594337 FIX(1.061594337)#define FIX_1_272758580 FIX(1.272758580)#define FIX_1_451774981 FIX(1.451774981)#ifdef FIX_1_847759065#undef FIX_1_847759065#endif#define FIX_1_847759065 FIX(1.847759065)#define FIX_2_172734803 FIX(2.172734803)#define FIX_2_562915447 FIX(2.562915447)#define FIX_3_624509785 FIX(3.624509785)#endif#ifdef DCT_IFAST_SUPPORTED/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) *//* We can gain a little more speed, with a further compromise in accuracy, * by omitting the addition in a descaling shift. This yields an incorrectly * rounded result half the time... */#ifndef USE_ACCURATE_ROUNDING#undef DESCALE#define DESCALE(x,n) RIGHT_SHIFT(x, n)#endif/* Multiply a DCTELEM variable by an INT32 constant, and immediately * descale to yield a DCTELEM result. */#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))/* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 * multiplication will do. For 12-bit data, the multiplier table is * declared INT32, so a 32-bit multiply will be used. */#if BITS_IN_JSAMPLE == 8#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval))#else#define DEQUANTIZE(coef,quantval) \ DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)#endif/* Like DESCALE, but applies to a DCTELEM and produces an int. * We assume that int right shift is unsigned if INT32 right shift is. */#ifdef RIGHT_SHIFT_IS_UNSIGNED#define ISHIFT_TEMPS DCTELEM ishift_temp;#if BITS_IN_JSAMPLE == 8#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */#else#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */#endif#define IRIGHT_SHIFT(x,shft) \ ((ishift_temp = (x)) < 0 ? \ (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ (ishift_temp >> (shft)))#else#define ISHIFT_TEMPS#define IRIGHT_SHIFT(x,shft) ((x) >> (shft))#endif#ifdef USE_ACCURATE_ROUNDING#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))#else#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n))#endif/* * Perform dequantization and inverse DCT on one block of coefficients. */GLOBAL(void)jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col){ DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; DCTELEM tmp10, tmp11, tmp12, tmp13; DCTELEM z5, z10, z11, z12, z13; JCOEFPTR inptr; IFAST_MULT_TYPE * quantptr; int * wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE2]; /* buffers data between passes */ SHIFT_TEMPS /* for DESCALE */ ISHIFT_TEMPS /* for IDESCALE */ /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; ctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] | inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] | inptr[DCTSIZE*7]) == 0) { /* AC terms all zero */ int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); wsptr[DCTSIZE*0] = dcval; wsptr[DCTSIZE*1] = dcval; wsptr[DCTSIZE*2] = dcval; wsptr[DCTSIZE*3] = dcval; wsptr[DCTSIZE*4] = dcval; wsptr[DCTSIZE*5] = dcval; wsptr[DCTSIZE*6] = dcval; wsptr[DCTSIZE*7] = dcval; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; continue; } /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); tmp10 = tmp0 + tmp2; /* phase 3 */ tmp11 = tmp0 - tmp2; tmp13 = tmp1 + tmp3; /* phases 5-3 */ tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ tmp0 = tmp10 + tmp13; /* phase 2 */ tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); z13 = tmp6 + tmp5; /* phase 6 */ z10 = tmp6 - tmp5; z11 = tmp4 + tmp7; z12 = tmp4 - tmp7; tmp7 = z11 + z13; /* phase 5 */ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. * However, the column calculation has created many nonzero AC terms, so * the simplification applies less often (typically 5% to 10% of the time). * On machines with very fast multiplication, it's possible that the * test takes more time than it's worth. In that case this section * may be commented out. */ #ifndef NO_ZERO_ROW_TEST if ((wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] | wsptr[7]) == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; outptr[2] = dcval; outptr[3] = dcval; outptr[4] = dcval; outptr[5] = dcval; outptr[6] = dcval; outptr[7] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; }#endif /* Even part */ tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; tmp7 = z11 + z13; /* phase 5 */ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; /* Final output stage: scale down by a factor of 8 and range-limit */ outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) & RANGE_MASK]; outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) & RANGE_MASK]; outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) & RANGE_MASK]; outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) & RANGE_MASK]; outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) & RANGE_MASK]; outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) & RANGE_MASK];
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -