?? 多元非線性回歸分析 方法原理說明.htm
字號:
<html xmlns:o="urn:schemas-microsoft-com:office:office"
xmlns:w="urn:schemas-microsoft-com:office:word"
xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv=Content-Type content="text/html; charset=GB2312">
<meta name=ProgId content=Word.Document>
<meta name=Generator content="Microsoft Word 9">
<meta name=Originator content="Microsoft Word 9">
<link rel=File-List href="./多元非線性回歸分析%20方法原理說明.files/filelist.xml">
<title>多元非線性回歸分析 方法原理說明</title>
<!--[if gte mso 9]><xml>
<o:DocumentProperties>
<o:Author>hwl</o:Author>
<o:LastAuthor>hwl</o:LastAuthor>
<o:Revision>9</o:Revision>
<o:TotalTime>77</o:TotalTime>
<o:Created>2002-05-18T09:33:00Z</o:Created>
<o:LastSaved>2002-05-25T06:17:00Z</o:LastSaved>
<o:Pages>2</o:Pages>
<o:Words>119</o:Words>
<o:Characters>679</o:Characters>
<o:Company>Microsoft</o:Company>
<o:Lines>5</o:Lines>
<o:Paragraphs>1</o:Paragraphs>
<o:CharactersWithSpaces>833</o:CharactersWithSpaces>
<o:Version>9.2812</o:Version>
</o:DocumentProperties>
</xml><![endif]--><!--[if gte mso 9]><xml>
<w:WordDocument>
<w:PunctuationKerning/>
<w:DrawingGridVerticalSpacing>7.8 磅</w:DrawingGridVerticalSpacing>
<w:DisplayHorizontalDrawingGridEvery>0</w:DisplayHorizontalDrawingGridEvery>
<w:DisplayVerticalDrawingGridEvery>2</w:DisplayVerticalDrawingGridEvery>
<w:Compatibility>
<w:SpaceForUL/>
<w:BalanceSingleByteDoubleByteWidth/>
<w:DoNotLeaveBackslashAlone/>
<w:ULTrailSpace/>
<w:DoNotExpandShiftReturn/>
<w:AdjustLineHeightInTable/>
<w:UseFELayout/>
</w:Compatibility>
</w:WordDocument>
</xml><![endif]-->
<style>
<!--
p.MSOBODYTEXTINDENT
{mso-char-indent-size:14pt;}
li.MSOBODYTEXTINDENT
{mso-char-indent-size:14pt;}
div.MSOBODYTEXTINDENT
{mso-char-indent-size:14pt;}
p.MSOBODYTEXTINDENT
{mso-char-indent-size:14pt;}
li.MSOBODYTEXTINDENT
{mso-char-indent-size:14pt;}
div.MSOBODYTEXTINDENT
{mso-char-indent-size:14pt;}
/* Font Definitions */
@font-face
{font-family:宋體;
panose-1:2 1 6 0 3 1 1 1 1 1;
mso-font-alt:SimSun;
mso-font-charset:134;
mso-generic-font-family:auto;
mso-font-pitch:variable;
mso-font-signature:3 135135232 16 0 262145 0;}
@font-face
{font-family:"\@宋體";
panose-1:2 1 6 0 3 1 1 1 1 1;
mso-font-charset:134;
mso-generic-font-family:auto;
mso-font-pitch:variable;
mso-font-signature:3 135135232 16 0 262145 0;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{mso-style-parent:"";
margin:0cm;
margin-bottom:.0001pt;
text-align:justify;
text-justify:inter-ideograph;
mso-pagination:none;
font-size:10.5pt;
mso-bidi-font-size:12.0pt;
font-family:"Times New Roman";
mso-fareast-font-family:宋體;
mso-font-kerning:1.0pt;}
p.MsoBodyTextIndent, li.MsoBodyTextIndent, div.MsoBodyTextIndent
{margin:0cm;
margin-bottom:.0001pt;
text-align:justify;
text-justify:inter-ideograph;
text-indent:28.0pt;
mso-char-indent-count:2.0;
mso-char-indent-size:14.0pt;
mso-pagination:none;
font-size:14.0pt;
mso-bidi-font-size:12.0pt;
font-family:宋體;
mso-bidi-font-family:"Times New Roman";
mso-font-kerning:1.0pt;}
p.MsoBodyTextIndent2, li.MsoBodyTextIndent2, div.MsoBodyTextIndent2
{margin-top:0cm;
margin-right:0cm;
margin-bottom:0cm;
margin-left:28.0pt;
margin-bottom:.0001pt;
text-align:justify;
text-justify:inter-ideograph;
text-indent:28.5pt;
mso-pagination:none;
font-size:14.0pt;
mso-bidi-font-size:12.0pt;
font-family:宋體;
mso-bidi-font-family:"Times New Roman";
mso-font-kerning:1.0pt;}
a:link, span.MsoHyperlink
{color:blue;
text-decoration:underline;
text-underline:single;}
a:visited, span.MsoHyperlinkFollowed
{color:purple;
text-decoration:underline;
text-underline:single;}
/* Page Definitions */
@page
{mso-page-border-surround-header:no;
mso-page-border-surround-footer:no;}
@page Section1
{size:595.3pt 841.9pt;
margin:72.0pt 90.0pt 72.0pt 90.0pt;
mso-header-margin:42.55pt;
mso-footer-margin:49.6pt;
mso-paper-source:0;
layout-grid:15.6pt;}
div.Section1
{page:Section1;}
/* List Definitions */
@list l0
{mso-list-id:26757288;
mso-list-type:hybrid;
mso-list-template-ids:971026976 -311782368 67698713 67698715 67698703 67698713 67698715 67698703 67698713 67698715;}
@list l0:level1
{mso-level-tab-stop:46.0pt;
mso-level-number-position:left;
margin-left:46.0pt;
text-indent:-18.0pt;}
ol
{margin-bottom:0cm;}
ul
{margin-bottom:0cm;}
-->
</style>
</head>
<body lang=ZH-CN link=blue vlink=purple style='tab-interval:21.0pt;text-justify-trim:
punctuation'>
<div class=Section1 style='layout-grid:15.6pt'>
<p class=MsoNormal align=center style='text-align:center'><b><span
style='font-size:16.0pt;mso-bidi-font-size:12.0pt;font-family:宋體;mso-ascii-font-family:
"Times New Roman";mso-hansi-font-family:"Times New Roman"'>多元非線性回歸分析</span></b><b><span
style='font-size:16.0pt;mso-bidi-font-size:12.0pt'> </span></b><b><span
style='font-size:16.0pt;mso-bidi-font-size:12.0pt;font-family:宋體;mso-ascii-font-family:
"Times New Roman";mso-hansi-font-family:"Times New Roman"'>方法原理說明</span></b><b><span
lang=EN-US style='font-size:16.0pt;mso-bidi-font-size:12.0pt'><o:p></o:p></span></b></p>
<p class=MsoBodyTextIndent>現在的非線性回歸方法種類很多,本程序主要采用的方法和原理說明如下:</p>
<p class=MsoNormal style='margin-left:46.0pt;text-indent:-18.0pt;mso-list:l0 level1 lfo2;
tab-stops:list 46.0pt'><![if !supportLists]><span lang=EN-US style='font-size:
14.0pt;mso-bidi-font-size:12.0pt;font-family:宋體'>1.<span style='font:7.0pt "Times New Roman"'>
</span></span><![endif]><span style='font-size:14.0pt;mso-bidi-font-size:12.0pt;
font-family:宋體'>隨機爬山法<span lang=EN-US>:<o:p></o:p></span></span></p>
<p class=MsoNormal style='margin-left:28.0pt;text-indent:-28.0pt;mso-char-indent-count:
-2.0;mso-char-indent-size:14.0pt;mso-char-indent-size:14pt'><span lang=EN-US
style='font-size:14.0pt;mso-bidi-font-size:12.0pt;font-family:宋體'><span
style="mso-spacerun: yes"> </span><span style="mso-spacerun:
yes"> </span>程序不斷的按參數的取值范圍隨機產生一組組的參數,然后按程序使用者設定的回歸模型計算,找出其中和數據符合最好的一組參數,接著按當前最優參數設定新的縮小的參數取值范圍,不斷重復這個過程直到參數取值范圍足夠小,這樣就確定了參數的值。<o:p></o:p></span></p>
<p class=MsoNormal style='margin-left:46.0pt;text-indent:-18.0pt;mso-list:l0 level1 lfo2;
tab-stops:list 46.0pt'><![if !supportLists]><span lang=EN-US style='font-size:
14.0pt;mso-bidi-font-size:12.0pt;font-family:宋體'>2.<span style='font:7.0pt "Times New Roman"'>
</span></span><![endif]><span style='font-size:14.0pt;mso-bidi-font-size:12.0pt;
font-family:宋體'>網格爬山法<span lang=EN-US>:<o:p></o:p></span></span></p>
<p class=MsoBodyTextIndent2>這和“隨機爬山法”不同的地方是程序先把參數取值區域按參數精度分割成許多塊(就像打網格),從每一塊區域的中心產生一組參數,這樣參數值的分布比較平均,其他地方與“隨機爬山法”相同。</p>
<p class=MsoNormal style='margin-left:46.0pt;text-indent:-18.0pt;mso-list:l0 level1 lfo2;
tab-stops:list 46.0pt'><![if !supportLists]><span lang=EN-US style='font-size:
14.0pt;mso-bidi-font-size:12.0pt;font-family:宋體'>3.<span style='font:7.0pt "Times New Roman"'>
</span></span><![endif]><span style='font-size:14.0pt;mso-bidi-font-size:12.0pt;
font-family:宋體'>最速下降法<span lang=EN-US>:<o:p></o:p></span></span></p>
<p class=MsoNormal style='margin-left:28.0pt;text-indent:27.0pt;mso-char-indent-size:
14pt'><span style='font-size:14.0pt;mso-bidi-font-size:12.0pt;font-family:宋體'>隨機選定一組參數初值<span
lang=EN-US>,按給定的模型函數可以找出每個參數的最佳前進方向,如果前進方向與上一次前進方向一致就加大前進步長,如果前進方向不一致就縮小前進步長,這樣不斷的迭代就可以找到最佳參數值(有可能是局部最佳值)。程序在找出一個最佳值后還會繼續運行,重新隨機選定參數初值進行計算。<o:p></o:p></span></span></p>
<p class=MsoNormal style='margin-left:46.0pt;text-indent:-18.0pt;mso-list:l0 level1 lfo2;
tab-stops:list 46.0pt'><![if !supportLists]><span lang=EN-US style='font-size:
14.0pt;mso-bidi-font-size:12.0pt;font-family:宋體'>4.<span style='font:7.0pt "Times New Roman"'>
</span></span><![endif]><span style='font-size:14.0pt;mso-bidi-font-size:12.0pt;
font-family:宋體'>最速下降網格爬山法<span lang=EN-US>:<o:p></o:p></span></span></p>
<p class=MsoNormal style='margin-left:28.0pt;text-indent:27.0pt'><span
style='font-size:14.0pt;mso-bidi-font-size:12.0pt;font-family:宋體'>最速下降網格爬山法是最速下降法和網格爬山法的混合使用,就是在每塊小區域中使用最速下降法找出局部最優值。<span
lang=EN-US><o:p></o:p></span></span></p>
<p class=MsoNormal style='margin-left:46.0pt;text-indent:-18.0pt;mso-list:l0 level1 lfo2;
tab-stops:list 46.0pt'><![if !supportLists]><span lang=EN-US style='font-size:
14.0pt;mso-bidi-font-size:12.0pt;font-family:宋體'>5.<span style='font:7.0pt "Times New Roman"'>
</span></span><![endif]><span style='font-size:14.0pt;mso-bidi-font-size:12.0pt;
font-family:宋體'>基因算法<span lang=EN-US>:<o:p></o:p></span></span></p>
<p class=MsoNormal style='margin-left:28.0pt;text-indent:27.0pt'><span
style='font-size:14.0pt;mso-bidi-font-size:12.0pt;font-family:宋體'>基因算法(統稱為進化計算)是通過模擬自然界的生物進化過程來解決實際問題的一種方法,它是一種通用的問題求解方法。程序采用一種編碼技術(程序中采用的是浮點表示方案)來表示問題的解,并將每個編碼看作一個個體,算法維持一個一定數目的編碼集合,稱為種群,并通過對種群中的每個個體進行某些遺傳操作來模擬進化過程,最終獲得一些具有較高性能指標的編碼。程序把算法中的編碼稱為基因,基因的表現型就是問題的解。<span
lang=EN-US><o:p></o:p></span></span></p>
<p class=MsoNormal style='margin-left:28.0pt;text-indent:27.0pt'><span
style='font-size:14.0pt;mso-bidi-font-size:12.0pt;font-family:宋體'>進化是由四個操作組成的連續過程:繁殖、變異(基因變異、交叉)、競爭和選擇;程序中采用的遺傳算子主要有:一致變異、非一致變異、單點一致交叉、啟發式交叉、一般算術交叉和完全算術交叉。<span
lang=EN-US><o:p></o:p></span></span></p>
<p class=MsoNormal><span lang=EN-US style='font-size:14.0pt;mso-bidi-font-size:
12.0pt;font-family:宋體'><![if !supportEmptyParas]> <![endif]><o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US style='font-size:14.0pt;mso-bidi-font-size:
12.0pt;font-family:宋體'><![if !supportEmptyParas]> <![endif]><o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US style='font-size:14.0pt;mso-bidi-font-size:
12.0pt;font-family:宋體'><![if !supportEmptyParas]> <![endif]><o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US style='font-size:9.0pt;mso-bidi-font-size:
12.0pt'><![if !supportEmptyParas]> <![endif]><o:p></o:p></span></p>
<p class=MsoNormal align=center style='text-align:center'><span lang=EN-US
style='font-size:9.0pt;mso-bidi-font-size:12.0pt'><a href="多元非線性回歸分析%20幫助主題.htm"><span
style='font-family:宋體;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:
"Times New Roman"'>幫助主題</span></a><o:p></o:p></span></p>
<p class=MsoNormal><span lang=EN-US style='font-size:14.0pt;mso-bidi-font-size:
12.0pt;font-family:宋體'><![if !supportEmptyParas]> <![endif]><o:p></o:p></span></p>
</div>
</body>
</html>
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -