亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? datapage.c

?? 強人寫的UCOS_II,V2.52
?? C
?? 第 1 頁 / 共 5 頁
字號:
        BRA     done

L_NOPAGE:
        MOVW    0,SP, 0,Y         ;// store the value passed in X (high word)
        STD           2,Y         ;// store the value passed in D (low word)
done:
        PULX                      ;// restore X register
        MOVW    0,SP, 1,+SP       ;// move return address
        RTS
  }
#else /* USE_SEVERAL_PAGES */
  __asm {
        PSHD                      ;// save D register
        LDAA    PAGE_ADDR         ;// save page register
        LDAB    4,SP              ;// load page part of address
        STAB    PAGE_ADDR         ;// set page register
        STX     0,Y               ;// store the value passed in X
        MOVW    0,SP, 2,Y         ;// store the value passed in D (low word)
        STAA    PAGE_ADDR         ;// restore page register
        PULD                      ;// restore D register
        MOVW    0,SP, 1,+SP       ;// move return address
        RTS
  }
#endif /* USE_SEVERAL_PAGES */
}

/*--------------------------- _FAR_COPY_RC --------------------------------
  This runtime routine is used to access paged memory via a runtime function.
  It may also be used if the compiler  option -Cp is not used with the runtime argument.

  Arguments :
  - offset part of the source int the X register
  - page part of the source in the A register
  - offset part of the dest int the Y register
  - page part of the dest in the B register
  - number of bytes to be copied is defined by the next 2 bytes after the return address.

  Result :
  - memory area copied
  - no registers are saved, i.e. all registers may be destroyed
  - all page register still contain the same value as before the call
  - the function returns after the constant defining the number of bytes to be copied


  stack-structure at the loop-label:
     0,SP : destination offset
     2,SP : source page
     3,SP : destination page
     4,SP : source offset
     6,SP : points to length to be copied. This function returns after the size

  A usual call to this function looks like:

  struct Huge src, dest;
    ; ...
    LDX  #src
    LDAA #PAGE(src)
    LDY  #dest
    LDAB #PAGE(dest)
    JSR  _FAR_COPY_RC
    DC.W sizeof(struct Huge)
    ; ...

  --------------------------- _FAR_COPY_RC ----------------------------------*/

#ifdef __cplusplus
extern "C"
#endif
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME

void NEAR _FAR_COPY_RC(void) {
#if USE_SEVERAL_PAGES
  __asm {
        DEX                       ;// source addr-=1, because loop counter ends at 1
        PSHX                      ;// save source offset
        PSHD                      ;// save both pages
        DEY                       ;// destination addr-=1, because loop counter ends at 1
        PSHY                      ;// save destination offset
        LDY     6,SP              ;// Load Return address
        LDX     2,Y+              ;// Load Size to copy
        STY     6,SP              ;// Store adjusted return address
loop:
        LDD     4,SP              ;// load source offset
        LEAY    D,X               ;// calculate actual source address
        LDAB    2,SP              ;// load source page
        __PIC_JSR(_LOAD_FAR_8)    ;// load 1 source byte
        PSHB                      ;// save value
        LDD     0+1,SP            ;// load destination offset
        LEAY    D,X               ;// calculate actual destination address
        PULA                      ;// restore value
        LDAB    3,SP              ;// load destination page
        __PIC_JSR(_STORE_FAR_8)   ;// store one byte
        DEX
        BNE     loop
        LEAS    6,SP              ;// release stack
        _SRET                     ;// debug info only: This is the last instr of a function with a special return
        RTS                       ;// return
  }
#else
  __asm {
        PSHD                      ;// store page registers
        TFR     X,D
        PSHY                      ;// temporary space
        LDY     4,SP              ;// load return address
        ADDD    2,Y+              ;// calculate source end address. Increment return address
        STY     4,SP
        PULY
        PSHD                      ;// store src end address
        LDAB    2,SP              ;// reload source page
        LDAA    PAGE_ADDR         ;// save page register
        PSHA
loop:
        STAB    PAGE_ADDR         ;// set source page
        LDAA    1,X+              ;// load value
        MOVB    4,SP, PAGE_ADDR   ;// set destination page
        STAA    1,Y+
        CPX     1,SP
        BNE     loop

        LDAA    5,SP+             ;// restore old page value and release stack
        STAA    PAGE_ADDR         ;// store it into page register
        _SRET                     ;// debug info only: This is the last instr of a function with a special return
        RTS
  }
#endif
}

/*--------------------------- _FAR_COPY --------------------------------

  The _FAR_COPY runtime routine was used to copied large memory blocks in previous compiler releases.
  However this release now does use _FAR_COPY_RC instead. The only difference is how the size of 
  the area to be copied is passed into the function. For _FAR_COPY the size is passed on the stack just
  above the return address. _FAR_COPY_RC does expect the return address just after the JSR _FAR_COPY_RC call
  in the code of the caller. This allows for denser code calling _FAR_COPY_RC but does also need a slightly
  larger runtime routine and it is slightly slower.
  The _FAR_COPY routine is here now mainly for compatibility with previous releases. 
  The current compiler does not use it. 
  
--------------------------- _FAR_COPY ----------------------------------*/

#ifdef __cplusplus
extern "C"
#endif
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME

void NEAR _FAR_COPY(void) {
#if USE_SEVERAL_PAGES
  __asm {
        DEX                       ;// source addr-=1, because loop counter ends at 1
        PSHX                      ;// save source offset
        PSHD                      ;// save both pages
        DEY                       ;// destination addr-=1, because loop counter ends at 1
        PSHY                      ;// save destination offset
        LDX     8,SP              ;// load counter, assuming counter > 0

loop:
        LDD     4,SP              ;// load source offset
        LEAY    D,X               ;// calculate actual source address
        LDAB    2,SP              ;// load source page
        __PIC_JSR(_LOAD_FAR_8)    ;// load 1 source byte
        PSHB                      ;// save value
        LDD     0+1,SP            ;// load destination offset
        LEAY    D,X               ;// calculate actual destination address
        PULA                      ;// restore value
        LDAB    3,SP              ;// load destination page
        __PIC_JSR(_STORE_FAR_8)   ;// store one byte
        DEX
        BNE     loop
        LDX     6,SP              ;// load return address
        LEAS    10,SP             ;// release stack
        JMP     0,X               ;// return
  }
#else
  __asm {
        PSHD                      ;// store page registers
        TFR     X,D
        ADDD    4,SP              ;// calculate source end address
        STD     4,SP
        PULB                      ;// reload source page
        LDAA    PAGE_ADDR         ;// save page register
        PSHA
loop:
        STAB    PAGE_ADDR         ;// set source page
        LDAA    1,X+              ;// load value
        MOVB    1,SP, PAGE_ADDR   ;// set destination page
        STAA    1,Y+
        CPX     4,SP
        BNE     loop

        LDAA    2,SP+             ;// restore old page value and release stack
        STAA    PAGE_ADDR         ;// store it into page register
        LDX     4,SP+             ;// release stack and load return address
        JMP     0,X               ;// return
  }
#endif
}

#else  /* __HCS12X__  */

/*
  The HCS12X knows two different kind of addresses:
    - Logical addresses. E.g.
       MOVB #page(var),RPAGE
       INC var

    - Global addresses E.g.
       MOVB #page(var),GPAGE
       GLDAA var
       INCA
       GSTAA var

  Global addresses are used with G-Load's and G-Store's, logical addresses are used for all the other instructions
  and occasions. As HC12's or HCS12's do not have the G-Load and G-Store instructions,
  global addresses are not used with these processor families.
  They are only used with HCS12X chips (and maybe future ones deriving from a HCS12X).

  Logical and Global addresses can point to the same object, however the global and logical address of an object
  are different for most objects (actually for all except the registers from 0 to 0x7FF).
  Therefore the compiler needs to transform in between them.

  HCS12X Pointer types:

    The following are logical addresses:
    - all 16 bit pointers
       - "char* __near": always.
       - "char *" in the small and banked memory model
    - 24 bit dpage, epage, ppage or rpage pointers (*1) (note: the first HCS12X compilers may not support these pointer types)
       - "char *__dpage": Note this type only exists for
                          orthogonality with the HC12 A4 chip which has a DPAGE reg.
                          It does not apply to the HCS12X.
       - "char *__epage": 24 bit pointer using the EPAGE register
       - "char *__ppage": 24 bit pointer using the PPAGE register.
                          As the PPAGE is also used for BANKED code,
                          using this pointer type is only legal from non banked code.
       - "char *__rpage": 24 bit pointer using the RPAGE register


    The following are global addresses:
       "char*": in the large memory model (only HCS12X)
       "char* __far": always for HCS12X.

   (*1): For the HC12 and HCS12 "char* __far" and "char*" in the large memory model are also logical.

   Some notes for the HC12/HCS12 programmers.

   The address of a far object for a HC12 and for a HCS12X is different, even if they are at the same place in the memory map.
   For the HC12, a far address is using the logical addresses, for the HCS12X however, far addresses are using global addresses.
   This does cause troubles for the unaware!
   
   The conversion routines implemented in this file support the special HCS12XE RAM mapping (when RAMHM is set).
   To enable this mapping compile this file with the "-MapRAM" compiler option.

  HCS12X Logical Memory map

    Logical Addresses           Used for                shadowed at           page register     Global Address

    0x000000 .. 0x0007FF        Peripheral Registers                          Not Paged         0x000000
    0x??0800 .. 0x??0BFF        Paged EEPROM                                  EPAGE (@0x17)     0x100000+EPAGE*0x0400
    0x000C00 .. 0x000FFF        Non Paged EEPROM        0xFF0800..0xFF0FFF    Not Paged         0x13FC00
    0x??1000 .. 0x??1FFF        Paged RAM                                     RPAGE (@0x16)     0x000000+RPAGE*0x1000
    0x002000 .. 0x003FFF        Non Paged RAM           0xFE1000..0xFF1FFF    Not Paged         0x0FE000
    0x004000 .. 0x007FFF        Non Paged FLASH         0xFC8000..0xFCBFFF    Not Paged         0x7F4000
    0x??8000 .. 0x00BFFF        Paged FLASH                                   PPAGE (@0x30)     0x400000+PPAGE*0x4000
    0x00C000 .. 0x00FFFF        Non Paged FLASH         0xFF8000..0xFFBFFF    Not Paged         0x7FC000

    NA: Not Applicable

  HCS12X Global Memory map

    Global Addresses            Used for                Logical mapped at

    0x000000 .. 0x0007FF        Peripheral Registers    0x000000 .. 0x0007FF
    0x000800 .. 0x000FFF        DMA registers           Not mapped
    0x001000 .. 0x0FFFFF        RAM                     0x??1000 .. 0x??1FFF
    0x0FE000 .. 0x0FFFFF        RAM, Log non paged      0x002000 .. 0x003FFF
    0x100000 .. 0x13FFFF        EEPROM                  0x??0800 .. 0x??0BFF
    0x13FC00 .. 0x13FFFF        EEPROM  non paged       0x000C00 .. 0x000FFF
    0x140000 .. 0x3FFFFF        External Space          Not mapped
    0x400000 .. 0x7FFFFF        FLASH                   0x??8000 .. 0x??BFFF
    0x7F4000 .. 0x7F7FFF        FLASH, Log non paged    0x004000 .. 0x007FFF
    0x7FC000 .. 0x7FFFFF        FLASH, Log non paged    0x00C000 .. 0x00FFFF

  HCS12XE Logical Memory map (with RAMHM set) 

    Logical Addresses           Used for                shadowed at           page register     Global Address

    0x000000 .. 0x0007FF        Peripheral Registers                          Not Paged         0x000000
    0x??0800 .. 0x??0BFF        Paged EEPROM                                  EPAGE             0x100000+EPAGE*0x0400
    0x000C00 .. 0x000FFF        Non Paged EEPROM        0xFF0800..0xFF0FFF    Not Paged         0x13FC00
    0x??1000 .. 0x??1FFF        Paged RAM                                     RPAGE             0x000000+RPAGE*0x1000
    0x002000 .. 0x003FFF        Non Paged RAM           0xFA1000..0xFB1FFF    Not Paged         0x0FA000
    0x004000 .. 0x007FFF        Non Paged RAM           0xFC1000..0xFF1FFF    Not Paged         0x0FC000
    0x??8000 .. 0x00BFFF        Paged FLASH                                   PPAGE             0x400000+PPAGE*0x4000
    0x00C000 .. 0x00FFFF        Non Paged FLASH         0xFF8000..0xFFBFFF    Not Paged         0x7FC000

    NA: Not Applicable

  HCS12X Global Memory map (with RAMHM set) 

    Global Addresses            Used for                Logical mapped at

    0x000000 .. 0x0007FF        Peripheral Registers    0x000000 .. 0x0007FF
    0x000800 .. 0x000FFF        DMA registers           Not mapped
    0x001000 .. 0x0FFFFF        RAM                     0x??1000 .. 0x??1FFF
    0x0FA000 .. 0x0FFFFF        RAM, Log non paged      0x002000 .. 0x007FFF
    0x100000 .. 0x13FFFF        EEPROM                  0x??0800 .. 0x??0BFF
    0x13FC00 .. 0x13FFFF        EEPROM  non paged       0x000C00 .. 0x000FFF
    0x140000 .. 0x3FFFFF        External Space          Not mapped
    0x400000 .. 0x7FFFFF        FLASH                   0x??8000 .. 0x??BFFF
    0x7F4000 .. 0x7F7FFF        FLASH, Log non paged    Not mapped
    0x7FC000 .. 0x7FFFFF        FLASH, Log non paged    0x00C000 .. 0x00FFFF


  How to read this table:
    For logical addresses, the lower 16 bits of the address do determine in which area the address is,
    if this address is paged, then this entry also controls and which of the EPAGE, PPAGE or RPAGE
    page register is controlling the bits 16 to 23 of the address.
    For global addresses, the bits 16 to 23 have to be in the GPAGE register and the lower 16 bits
    have to be used with the special G load or store instructions (e.g. GLDAA).
    As example the logical address 0x123456 is invalid. Because its lower bits 0x3456 are in a
    non paged area, so the page 0x12 does not exist.
    The address 0xFE1020 however does exist. To access it, the RPAGE has to contain 0xFE and the
    offset 0x1020 has to be used.

      ORG $7000
        MOVB #0xFE, 0x16 ; RPAGE
        LDAA 0x1020      ; reads at the logical address 0xFE1020

    Because the last two RAM pages are also accessible directly from 0x2000 to 0x3FFF, the
    following shorter code does read the same memory location:

      ORG $7000
        LDAA 0x2020      ; reads at the logical address 0x2020
                         ;   which maps to the same memory as 0xFE1020

    This memory location also has a global address. For logical 0xFE1020 the global address is 0x0FE020.
    So the following code does once more access the same memory location:

      ORG $7000
        MOVB #0x0F, 0x10 ; GPAGE
        GLDAA 0xE020     ; reads at the global address 0x0FE020
                         ;   which maps to the same memory as the logical addr. 0xFE1020

    Therefore every memory location for the HCS12X has up to 3 different addresses.
    Up to two logical and one global.
    Notes.
      - Not every address has a logical equivalent. The external space is only available in the global address space.

      - The PPAGE must only be set if the code is outside of the 0x8000 to 0xBFFF range.
        If not, the next code fetch will be from the new wrong PPAGE value.

      - Inside of the paged area, the highest pages are allocated first. So all HCS12X's do have the FF pages
        (if they have this memory type at all).

      - For RPAGE, the value 0 is illegal. Otherwise the global addresses would overlap with the registers.

*/

#if __OPTION_ACTIVE__("-MapRAM")
#define __HCS12XE_RAMHM_SET__
#endif

/*--------------------------- pointer conversion operations -------------------------------*/

/*--------------------------- _CONV_GLOBAL_TO_LOGICAL --------------------------------

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
中文字幕精品综合| 不卡一卡二卡三乱码免费网站| 国产中文一区二区三区| 99国产一区二区三精品乱码| 精品粉嫩超白一线天av| 亚洲国产日日夜夜| 91美女片黄在线观看| 久久久av毛片精品| 青青草成人在线观看| 欧美日韩在线播放三区四区| ...中文天堂在线一区| 国产福利精品一区二区| 精品国产乱子伦一区| 蜜臀久久99精品久久久久久9| 在线亚洲欧美专区二区| 国产精品久久久久久久久免费樱桃 | 美女视频黄 久久| 欧美日韩一区三区| 一区二区三区四区视频精品免费| 高清国产午夜精品久久久久久| 精品免费99久久| 毛片不卡一区二区| 日韩视频中午一区| 奇米亚洲午夜久久精品| 在线91免费看| 日韩精品国产欧美| 欧美肥妇bbw| 免费人成精品欧美精品| 欧美一区二区啪啪| 看电视剧不卡顿的网站| 日韩限制级电影在线观看| 青青草国产精品97视觉盛宴| 日韩视频免费直播| 精品一区二区三区久久久| 91精品一区二区三区久久久久久| 天天色综合天天| 日韩三级免费观看| 国产麻豆午夜三级精品| 国产亚洲综合av| heyzo一本久久综合| 亚洲综合丁香婷婷六月香| 欧美日韩一二三| 免费高清成人在线| 久久久久久久久97黄色工厂| 丰满白嫩尤物一区二区| 亚洲嫩草精品久久| 91麻豆精品91久久久久久清纯 | 亚洲线精品一区二区三区| 欧美午夜在线观看| 另类小说欧美激情| 欧美高清在线一区| 欧美午夜精品一区二区蜜桃 | 91精品国产欧美日韩| 美女视频一区在线观看| 欧美经典三级视频一区二区三区| 色综合视频在线观看| 婷婷久久综合九色综合伊人色| 日韩欧美国产一区二区三区| 成人影视亚洲图片在线| 伊人一区二区三区| 欧美变态tickling挠脚心| 成人免费av网站| 午夜精品福利久久久| 久久久久久一二三区| 91原创在线视频| 免费看欧美女人艹b| 欧美高清一级片在线观看| 欧美性做爰猛烈叫床潮| 国产精品一二三区在线| 亚洲综合激情小说| 日本一区二区三区免费乱视频| 欧美午夜在线一二页| 国产盗摄视频一区二区三区| 亚洲一区二区精品3399| 久久久综合九色合综国产精品| 91黄色免费网站| 粉嫩aⅴ一区二区三区四区| 亚洲国产一区二区视频| 国产精品丝袜一区| 日韩精品一区二区三区在线观看| www.亚洲色图| 极品少妇一区二区| 日韩高清欧美激情| 一区二区三区在线影院| 国产色婷婷亚洲99精品小说| 欧美日韩成人综合在线一区二区| 夫妻av一区二区| 国内精品在线播放| 人禽交欧美网站| 午夜久久久久久| 亚洲免费色视频| 国产精品网站导航| 亚洲精品一区二区三区香蕉| 91精品国产aⅴ一区二区| 欧洲日韩一区二区三区| 成人午夜av在线| 国产一区二区三区在线观看免费 | 尤物av一区二区| 国产精品国产自产拍在线| 欧美一卡二卡在线| 欧美日韩一级大片网址| 欧美自拍丝袜亚洲| 91亚洲精华国产精华精华液| 成人高清视频免费观看| 国产99精品在线观看| 国产精品综合视频| 久久电影网站中文字幕| 精品一区二区三区免费毛片爱| 亚洲成人资源在线| 五月天激情综合网| 国产二区国产一区在线观看| 久久精品国产**网站演员| 久久se这里有精品| 国产伦精品一区二区三区免费迷| 久久精品国产**网站演员| 久久99久国产精品黄毛片色诱| 免费国产亚洲视频| 精品一区二区三区在线观看国产 | 亚洲成人免费电影| 亚洲va韩国va欧美va| 日韩成人精品在线观看| 日本中文字幕一区二区有限公司| 日韩高清一级片| 久久国产麻豆精品| 国产精品99久| 日本高清不卡视频| 欧美日韩你懂得| 日韩免费看的电影| 国产目拍亚洲精品99久久精品| 国产精品久久影院| 亚洲黄色在线视频| 日本一区中文字幕| 国产成人aaa| 在线看不卡av| 精品va天堂亚洲国产| 国产精品日产欧美久久久久| 亚洲精品中文在线影院| 日韩成人精品在线| 粉嫩av一区二区三区在线播放| 在线免费观看不卡av| 日韩一区二区三区视频| 久久久久久久久97黄色工厂| 亚洲欧美日韩电影| 日本网站在线观看一区二区三区| 国产精品888| 欧美日韩一区 二区 三区 久久精品| 欧美一区二区高清| 国产精品久久看| 青青草91视频| www.日韩精品| 日韩视频一区二区| 亚洲免费观看在线观看| 韩国一区二区视频| 欧美日韩专区在线| 国产精品福利在线播放| 午夜久久久久久久久| 不卡欧美aaaaa| 欧美一区二区日韩| 一区二区三区欧美日韩| 国产精品一区二区x88av| 欧美性猛片aaaaaaa做受| 国产欧美日韩另类一区| 日韩精品久久理论片| 91蝌蚪porny| 国产性色一区二区| 麻豆精品在线播放| 欧美偷拍一区二区| 中文字幕在线不卡国产视频| 国精产品一区一区三区mba桃花 | 另类小说欧美激情| 欧美性猛交xxxx乱大交退制版| 久久久久国色av免费看影院| 婷婷中文字幕一区三区| 一本色道久久综合亚洲aⅴ蜜桃| 久久久久久影视| 九九九久久久精品| 欧美一区二区三区白人| 亚洲图片一区二区| 色综合色综合色综合色综合色综合| 久久尤物电影视频在线观看| 日本视频免费一区| 91精品欧美福利在线观看| 亚洲午夜精品在线| 91福利国产精品| 一区二区三区四区中文字幕| av影院午夜一区| 国产精品久久久99| 99久久免费精品| 亚洲欧洲日本在线| caoporen国产精品视频| 国产精品美女久久久久久久网站| 免费成人美女在线观看| 欧美一区二区大片| 蜜桃av噜噜一区二区三区小说| 欧美一区二区三区在线看| 热久久久久久久| 日韩色视频在线观看| 麻豆国产欧美一区二区三区| 日韩一区二区在线看| 久久草av在线|