亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? ga.h

?? 關(guān)于遺傳算法代碼。比較全。希望能給大家?guī)韼椭?
?? H
字號:
// $Header: /usr/people/mbwall/src/galib/ga/RCS/ga.h,v 1.4 1999/03/30 02:37:23 mbwall Exp $
/* ----------------------------------------------------------------------------
  ga.h
  mbwall 28jul94
  Copyright (c) 1995-1996 Massachusetts Institute of Technology
                          all rights reserved

  Main header for the GAlibrary.  This header is provided to make it easy to 
include GAlib components in your code.  It includes all of the genetic 
algorithm classes as well as all of the genome classes (plus a bunch of 
comments giving an overview of the library).
  References to 'Goldberg's Book' are to David E Goldberg's book, and 
references to 'Numerical Recipes' are to the Numerical Recipes in C book.

"Genetic Algorithms in Search, Optimization, and Machine Learning"
    Goldberg, David Edward, 1953- 
    Addison-Wesley Pub. Co., (c) 1989
    ISBN 0-201-15767-5

"Numerical Recipes in C:  The Art of Scientific Computing"
    Cambridge University Press, (c) 1988-1992
    ISBN 0-521-43108-5

-------------------------------------------------------------------------------
Overview of who does what in the GAlibrary -- see http://lancet.mit.edu/ga/
-------------------------------------------------------------------------------
Here are the library capabilities and which parts of the library are involved:

Genetic Algorithm
    This object contains the operators and data needed to perform the 
  optimization.  There are a few basic GA implementations in the library, 
  including the basic 'simple' genetic algorithm described by Goldberg, the
  'steady-state' genetic algorithm, the 'incremental' genetic algorithm based
  on the Genitor model, and the 'parallel' genetic algorithm that uses multiple
  populations in parallel on a single CPU.
    The base GA object defines many of the parameters and statistics useful
  when running an experiment.  It also defines the basic interface for most
  genetic algorithms.

Genome
    The genome object contains the actual problem-specific data as well as the
  mapping from data-domain to problem-domain (by way of the objective functions
    All of the genomes are derived from a base genome class.  The base genome
  class defines the interface used by genetic algorithms to modify the data.
  Any genome used in an experiment must be derived from the base genom class
  as well as a user-defined data type (or one of the sample types provided in
  GAlib).  The library includes array, tree, list, and binary-string data types
  to use if you do not want to define your own.

Population
    Each population contains a bunch of genomes.  Populations know how to 
  select genomes.  They also have housekeeping routines such as replace,
  remove, and add.  A population can be given some intelligence by using its
  evaluation member rather than evaluting each individual on its own.

Selection
    Selection is implemented as a member function of the population object.
  Any GA simply calls the population's 'select' member to get the genome that
  it needs to work with.  

Crossover/Mating
    Crossover is implemented as a separate object.  We have various crossover
  objects, each corresponding to a genome type.  These could be templatized,
  but that wouldn't buy us much since the behaviour depends upon the data type
  anyway.
    Crossover is not a member function of the genomes.  I fretted over how to
  do this properly and decided to keep crossover as an operator separate from
  the genomes.  The other viable option was to make crossover a member function
  of the genomes, but then changing the crossover during the course of the
  evolution becomes more difficult.  Also, it is easier to define asexual (or
  other non-standard mating schemes) with an operator that is not a member of
  the genome object.
    When you create a GA, you specify a genome (or population of genomes).  The
  GA asks the genome how it mates, and the genome returns a pointer to its
  preferred crossover method.  You can set the crossover explicitly on the GA
  if you prefer.  Using this scheme we can assign default crossover operators
  so that you don't have to specify a crossover unless you want to.
    Each genome type must have a corresponding crossover operator defined that
  can operate on that data type.  The genetic algorithms don't care about the
  specific crossover type - they call the mating methods based upon the high
  level interface definition.

Mutation 
    Mutation is defined at the genome level and is implemented as a member 
  function of the base genome class.  Each genome must define its own
  mutation method that will operate on its specific data type.

Replacement strategies
    The replacement strategy defines how a child is inserted into a population.
    Replacement strategies include child-replaces-parent, child-replaces-worst,
  and child-replaces-random.  These make sense only for GAs with overlapping
  populations.

Convergence and completion
    The GA defines a 'done' member that calls a user-defineable completion
  function to determine whether or not the GA is finished.  Built-in completion
  routines include population-converged, best-converged and 
  number-of-generations.

Fitness vs Objective
    Note the difference between fitness function and objective 
  function.  In this library, the objective function is user-defined and tells
  (on an arbitrary scale) how well a genome performs relative to other
  genomes.  The fitness function, on the other hand, takes objective function 
  scores and processes them to produce a number for each genome that 
  represents its fitness for mating/selection.
    The selection strategies include roulette wheel, tournament, linear
  ranking, and stochastic sampling.  See the selector headers for more details
  about each strategy and its implementation.
    Speciation is included as a type of selection.  To use the speciating 
  selector you must define a distance function.  See the selector header for 
  more details.
    Scaling methods are loosely coupled with the selection strategies.  They
  include linear scaling, sigma truncation, and ranking.  See the fitness
  headers for more details about how you can mix and match scaling methods with
  selection strategies.

Elitism
    Elitism is optional.  If you want the best of each generation to be carried
  over to the next generation, turn on the elitism.  If not, turn it off.  This
  only works with non-overlapping populations.

Initialization
    Each genome has its own initialization operator.  When a GA is
  initialized, it initializes its populations, which in turn tells each 
  chromomosome to initialize itself.  You can use the initialization method to
  bias an initial population.  This can be done either at the population level
  by customizing the population's initialization operator or at the genome
  level by customizing the genome's initilizer.
    Default initializers are included for most genomes.  See the documentation
  and genome headers for more details.

-------------------------------------------------------------------------------
Basic usage

  You create a GA by first instantiating the non-default parts that you want to
use.  For example, if you want a binary string genome with uniform crossover
and roulette wheel selection, you would define an objective function, 
instantiate a genome, instantiate a uniform crossover operator, then 
instantiate the GA.  Since the roulette wheel selector is the default, you do
not need to instantiate one to use that method.
  In every case you MUST define an objective function and you MUST instantiate
one copy of the genome type you want to use.

---------------------------------------------------------------------------- */
#ifndef _ga_ga_h_
#define _ga_ga_h_

// Make sure that we get the configuration into each of the galib components
// that will be used.
#include <ga/gaconfig.h>

// These are the headers for all of the genetic algorithm classes.
#include <ga/GASimpleGA.h>
#include <ga/GASStateGA.h>
#include <ga/GAIncGA.h>
#include <ga/GADemeGA.h>
#ifndef NO_TEMPLATES
#include <ga/GADCrowdingGA.h>
#endif

// Here we include the headers for all of the various genome types.  We do 
// *not* include the headers for template specializations.  This prevents
// unnecessary instantiations of template objects.
#include <ga/GA1DBinStrGenome.h>
#include <ga/GA2DBinStrGenome.h>
#include <ga/GA3DBinStrGenome.h>
#include <ga/GABin2DecGenome.h>

#ifndef NO_TEMPLATES
#include <ga/GA1DArrayGenome.h>
#include <ga/GA2DArrayGenome.h>
#include <ga/GA3DArrayGenome.h>
#include <ga/GAListGenome.h>
#include <ga/GATreeGenome.h>
//#include <ga/GAStringGenome.h>
//#include <ga/GARealGenome.h>
#endif

#endif

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人黄色电影在线| 免费久久精品视频| 91福利在线导航| 一区二区三区不卡视频| 欧美老人xxxx18| 青青草精品视频| www国产精品av| 国产suv精品一区二区三区 | 欧美一区二区三区免费| 久久精品国产成人一区二区三区| 精品欧美久久久| 成人免费高清视频| 亚洲精品日日夜夜| 在线不卡一区二区| 韩国精品免费视频| 中文字幕视频一区二区三区久| 欧美在线色视频| 免费在线看一区| 国产精品美女视频| 欧美性感一类影片在线播放| 乱一区二区av| 国产精品家庭影院| 4438亚洲最大| 成人午夜av在线| 视频一区在线播放| 国产日韩v精品一区二区| 欧美午夜寂寞影院| 国产剧情一区在线| 一区二区三区在线高清| 日韩免费成人网| 99免费精品视频| 久久99国产精品尤物| 亚洲美女免费视频| 26uuu另类欧美| 欧美日韩小视频| 成人网在线免费视频| 日本欧美韩国一区三区| 国产精品久久久久久亚洲伦| 欧美一区二区三区电影| 一本大道av一区二区在线播放| 美女视频黄频大全不卡视频在线播放| 欧美激情综合网| 这里只有精品电影| 色综合视频一区二区三区高清| 久草精品在线观看| 亚洲一二三四区| **性色生活片久久毛片| 精品盗摄一区二区三区| 欧美色偷偷大香| 色综合久久天天| 成人性生交大片免费| 久久99精品久久久久婷婷| 午夜视频一区二区| 一区二区在线免费观看| 国产日韩欧美a| 欧美一级欧美三级在线观看 | 国产精品一区专区| 丝袜亚洲另类丝袜在线| 一区二区三区四区视频精品免费 | 色94色欧美sute亚洲线路一久 | 成人高清免费观看| 国产一区不卡在线| 久久精品国产99| 蜜桃av一区二区| 午夜精品久久久久影视| 亚洲高清免费观看高清完整版在线观看| 欧美高清在线视频| 中文在线资源观看网站视频免费不卡| 欧美mv日韩mv国产网站app| 日韩视频在线永久播放| 在线综合视频播放| 在线电影一区二区三区| 欧美高清一级片在线| 欧美在线999| 精品视频在线免费观看| 在线视频中文字幕一区二区| 色偷偷一区二区三区| 91在线观看免费视频| 色猫猫国产区一区二在线视频| 91丨porny丨国产入口| 91偷拍与自偷拍精品| 97aⅴ精品视频一二三区| 91视频在线观看| 欧美日韩在线亚洲一区蜜芽| 欧美日韩国产片| 日韩你懂的在线观看| 精品国产乱码久久久久久影片| 精品99一区二区| 中文字幕欧美国产| 亚洲人精品午夜| 夜夜揉揉日日人人青青一国产精品| 经典三级在线一区| 精品亚洲porn| 岛国精品一区二区| 色噜噜狠狠色综合中国| 欧美精品v国产精品v日韩精品| 日韩一区二区三区视频| 久久综合狠狠综合久久综合88| 国产视频一区不卡| 亚洲欧美综合网| 亚洲国产精品久久一线不卡| 日韩电影在线观看电影| 国产综合一区二区| 9色porny自拍视频一区二区| 欧美性三三影院| 精品第一国产综合精品aⅴ| 国产精品丝袜黑色高跟| 亚洲国产成人高清精品| 精品制服美女丁香| 99re亚洲国产精品| 欧美一区中文字幕| 国产精品色噜噜| 午夜精品久久久久久久蜜桃app| 精品一区二区三区免费视频| 91天堂素人约啪| 日韩欧美的一区| 亚洲欧美视频在线观看视频| 日本视频免费一区| av中文字幕亚洲| 欧美一级理论片| 国产精品高潮久久久久无| 日韩国产欧美三级| 成人91在线观看| 91精品国产综合久久福利软件| 国产精品不卡在线观看| 日本va欧美va瓶| 91色视频在线| 国产午夜一区二区三区| 亚洲综合丁香婷婷六月香| 久久国产精品区| 欧美三级视频在线| 欧美极品另类videosde| 日韩av中文在线观看| 成人精品亚洲人成在线| 精品剧情在线观看| 一卡二卡三卡日韩欧美| 国产sm精品调教视频网站| 91精品视频网| 国产成人精品一区二区三区四区 | 欧美一级夜夜爽| 亚洲免费在线视频| 懂色av一区二区三区蜜臀| 欧美疯狂做受xxxx富婆| 最好看的中文字幕久久| 九色综合狠狠综合久久| 欧美精品乱人伦久久久久久| 国产精品成人免费在线| 国产福利精品一区| 日韩三级在线免费观看| 亚洲高清视频中文字幕| 色婷婷综合视频在线观看| www一区二区| 久久99久久久欧美国产| 欧美一区二区免费视频| 亚洲高清视频在线| 欧美图片一区二区三区| 亚洲品质自拍视频网站| 成人精品国产免费网站| 国产欧美精品区一区二区三区 | 国产suv一区二区三区88区| 精品国产成人系列| 蜜臀av性久久久久蜜臀aⅴ| 3751色影院一区二区三区| 亚洲高清不卡在线观看| 色婷婷精品大在线视频| 自拍偷拍亚洲欧美日韩| av一区二区三区| 国产精品看片你懂得| 成人av网站免费观看| 国产欧美日本一区二区三区| 国产乱理伦片在线观看夜一区| 精品国产乱码久久久久久1区2区| 久久99久久精品欧美| 精品1区2区在线观看| 国产精品影视网| 国产精品视频一二三区| 成人免费毛片aaaaa**| 国产精品高潮呻吟久久| 91香蕉视频黄| 亚洲高清中文字幕| 日韩精品一区二区三区中文不卡| 美女免费视频一区二区| 精品国产sm最大网站| 国产精品538一区二区在线| 国产精品色婷婷久久58| 日本韩国欧美在线| 日韩中文字幕1| 精品sm捆绑视频| 99久久久无码国产精品| 国产99久久久国产精品潘金 | 国产精品久久久久一区二区三区| 99视频有精品| 丝袜亚洲精品中文字幕一区| 日韩欧美国产电影| 国产91精品一区二区麻豆网站| 亚洲人成电影网站色mp4| 欧美丝袜丝交足nylons| 久久精品国产免费| 亚洲欧洲精品一区二区三区不卡| 欧美性高清videossexo|