亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? ga.h

?? 關(guān)于遺傳算法代碼。比較全。希望能給大家?guī)韼椭?
?? H
字號:
// $Header: /usr/people/mbwall/src/galib/ga/RCS/ga.h,v 1.4 1999/03/30 02:37:23 mbwall Exp $
/* ----------------------------------------------------------------------------
  ga.h
  mbwall 28jul94
  Copyright (c) 1995-1996 Massachusetts Institute of Technology
                          all rights reserved

  Main header for the GAlibrary.  This header is provided to make it easy to 
include GAlib components in your code.  It includes all of the genetic 
algorithm classes as well as all of the genome classes (plus a bunch of 
comments giving an overview of the library).
  References to 'Goldberg's Book' are to David E Goldberg's book, and 
references to 'Numerical Recipes' are to the Numerical Recipes in C book.

"Genetic Algorithms in Search, Optimization, and Machine Learning"
    Goldberg, David Edward, 1953- 
    Addison-Wesley Pub. Co., (c) 1989
    ISBN 0-201-15767-5

"Numerical Recipes in C:  The Art of Scientific Computing"
    Cambridge University Press, (c) 1988-1992
    ISBN 0-521-43108-5

-------------------------------------------------------------------------------
Overview of who does what in the GAlibrary -- see http://lancet.mit.edu/ga/
-------------------------------------------------------------------------------
Here are the library capabilities and which parts of the library are involved:

Genetic Algorithm
    This object contains the operators and data needed to perform the 
  optimization.  There are a few basic GA implementations in the library, 
  including the basic 'simple' genetic algorithm described by Goldberg, the
  'steady-state' genetic algorithm, the 'incremental' genetic algorithm based
  on the Genitor model, and the 'parallel' genetic algorithm that uses multiple
  populations in parallel on a single CPU.
    The base GA object defines many of the parameters and statistics useful
  when running an experiment.  It also defines the basic interface for most
  genetic algorithms.

Genome
    The genome object contains the actual problem-specific data as well as the
  mapping from data-domain to problem-domain (by way of the objective functions
    All of the genomes are derived from a base genome class.  The base genome
  class defines the interface used by genetic algorithms to modify the data.
  Any genome used in an experiment must be derived from the base genom class
  as well as a user-defined data type (or one of the sample types provided in
  GAlib).  The library includes array, tree, list, and binary-string data types
  to use if you do not want to define your own.

Population
    Each population contains a bunch of genomes.  Populations know how to 
  select genomes.  They also have housekeeping routines such as replace,
  remove, and add.  A population can be given some intelligence by using its
  evaluation member rather than evaluting each individual on its own.

Selection
    Selection is implemented as a member function of the population object.
  Any GA simply calls the population's 'select' member to get the genome that
  it needs to work with.  

Crossover/Mating
    Crossover is implemented as a separate object.  We have various crossover
  objects, each corresponding to a genome type.  These could be templatized,
  but that wouldn't buy us much since the behaviour depends upon the data type
  anyway.
    Crossover is not a member function of the genomes.  I fretted over how to
  do this properly and decided to keep crossover as an operator separate from
  the genomes.  The other viable option was to make crossover a member function
  of the genomes, but then changing the crossover during the course of the
  evolution becomes more difficult.  Also, it is easier to define asexual (or
  other non-standard mating schemes) with an operator that is not a member of
  the genome object.
    When you create a GA, you specify a genome (or population of genomes).  The
  GA asks the genome how it mates, and the genome returns a pointer to its
  preferred crossover method.  You can set the crossover explicitly on the GA
  if you prefer.  Using this scheme we can assign default crossover operators
  so that you don't have to specify a crossover unless you want to.
    Each genome type must have a corresponding crossover operator defined that
  can operate on that data type.  The genetic algorithms don't care about the
  specific crossover type - they call the mating methods based upon the high
  level interface definition.

Mutation 
    Mutation is defined at the genome level and is implemented as a member 
  function of the base genome class.  Each genome must define its own
  mutation method that will operate on its specific data type.

Replacement strategies
    The replacement strategy defines how a child is inserted into a population.
    Replacement strategies include child-replaces-parent, child-replaces-worst,
  and child-replaces-random.  These make sense only for GAs with overlapping
  populations.

Convergence and completion
    The GA defines a 'done' member that calls a user-defineable completion
  function to determine whether or not the GA is finished.  Built-in completion
  routines include population-converged, best-converged and 
  number-of-generations.

Fitness vs Objective
    Note the difference between fitness function and objective 
  function.  In this library, the objective function is user-defined and tells
  (on an arbitrary scale) how well a genome performs relative to other
  genomes.  The fitness function, on the other hand, takes objective function 
  scores and processes them to produce a number for each genome that 
  represents its fitness for mating/selection.
    The selection strategies include roulette wheel, tournament, linear
  ranking, and stochastic sampling.  See the selector headers for more details
  about each strategy and its implementation.
    Speciation is included as a type of selection.  To use the speciating 
  selector you must define a distance function.  See the selector header for 
  more details.
    Scaling methods are loosely coupled with the selection strategies.  They
  include linear scaling, sigma truncation, and ranking.  See the fitness
  headers for more details about how you can mix and match scaling methods with
  selection strategies.

Elitism
    Elitism is optional.  If you want the best of each generation to be carried
  over to the next generation, turn on the elitism.  If not, turn it off.  This
  only works with non-overlapping populations.

Initialization
    Each genome has its own initialization operator.  When a GA is
  initialized, it initializes its populations, which in turn tells each 
  chromomosome to initialize itself.  You can use the initialization method to
  bias an initial population.  This can be done either at the population level
  by customizing the population's initialization operator or at the genome
  level by customizing the genome's initilizer.
    Default initializers are included for most genomes.  See the documentation
  and genome headers for more details.

-------------------------------------------------------------------------------
Basic usage

  You create a GA by first instantiating the non-default parts that you want to
use.  For example, if you want a binary string genome with uniform crossover
and roulette wheel selection, you would define an objective function, 
instantiate a genome, instantiate a uniform crossover operator, then 
instantiate the GA.  Since the roulette wheel selector is the default, you do
not need to instantiate one to use that method.
  In every case you MUST define an objective function and you MUST instantiate
one copy of the genome type you want to use.

---------------------------------------------------------------------------- */
#ifndef _ga_ga_h_
#define _ga_ga_h_

// Make sure that we get the configuration into each of the galib components
// that will be used.
#include <ga/gaconfig.h>

// These are the headers for all of the genetic algorithm classes.
#include <ga/GASimpleGA.h>
#include <ga/GASStateGA.h>
#include <ga/GAIncGA.h>
#include <ga/GADemeGA.h>
#ifndef NO_TEMPLATES
#include <ga/GADCrowdingGA.h>
#endif

// Here we include the headers for all of the various genome types.  We do 
// *not* include the headers for template specializations.  This prevents
// unnecessary instantiations of template objects.
#include <ga/GA1DBinStrGenome.h>
#include <ga/GA2DBinStrGenome.h>
#include <ga/GA3DBinStrGenome.h>
#include <ga/GABin2DecGenome.h>

#ifndef NO_TEMPLATES
#include <ga/GA1DArrayGenome.h>
#include <ga/GA2DArrayGenome.h>
#include <ga/GA3DArrayGenome.h>
#include <ga/GAListGenome.h>
#include <ga/GATreeGenome.h>
//#include <ga/GAStringGenome.h>
//#include <ga/GARealGenome.h>
#endif

#endif

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色综合久久66| 欧美性色黄大片| 亚洲综合在线观看视频| 日韩欧美一卡二卡| 99精品热视频| 国内精品国产三级国产a久久| 一区二区三区欧美激情| 久久久久久影视| 91 com成人网| 91美女在线观看| 国产成人在线视频播放| 水蜜桃久久夜色精品一区的特点| 欧美国产国产综合| 日韩欧美国产精品一区| 欧美午夜不卡视频| 91浏览器入口在线观看| 国产精品99久久久久久久vr| 丝袜诱惑亚洲看片 | 亚洲国产精品激情在线观看| 91精品国产综合久久久久| 91国模大尺度私拍在线视频| av午夜一区麻豆| 成人免费高清在线观看| 国产原创一区二区三区| 99久久亚洲一区二区三区青草| 日产欧产美韩系列久久99| 亚洲激情图片qvod| 国产精品色一区二区三区| 久久久久国产成人精品亚洲午夜| 日韩一级免费观看| 3d成人h动漫网站入口| 欧美日韩专区在线| 欧美系列一区二区| 欧美日韩一区在线| 欧美日韩黄色影视| 欧美日韩午夜影院| 欧美日本韩国一区二区三区视频 | 午夜影院久久久| 一区二区在线免费观看| 亚洲精品亚洲人成人网| 亚洲激情图片一区| 亚洲成av人综合在线观看| 亚洲国产日韩精品| 亚洲国产精品影院| 日韩1区2区日韩1区2区| 日本欧美在线观看| 激情久久久久久久久久久久久久久久| 九色|91porny| 成人性生交大片免费看视频在线| 国产精品1区2区| av网站一区二区三区| 91丨porny丨蝌蚪视频| 色综合久久综合网| 欧美人与禽zozo性伦| 欧美精品自拍偷拍| 精品伦理精品一区| 国产亚洲短视频| 亚洲美女在线一区| 午夜视频在线观看一区二区| 日本女人一区二区三区| 久草这里只有精品视频| 国产精品1区2区3区| 99re热这里只有精品免费视频| 欧美性猛交xxxx乱大交退制版| 538prom精品视频线放| 精品91自产拍在线观看一区| 中文字幕国产一区| 亚洲线精品一区二区三区八戒| 人人狠狠综合久久亚洲| 黄色资源网久久资源365| eeuss鲁片一区二区三区在线看 | 国产午夜精品福利| 亚洲青青青在线视频| 五月婷婷另类国产| 国产一区二区免费视频| 99久久精品国产毛片| 717成人午夜免费福利电影| 精品成人私密视频| 亚洲男同1069视频| 精品亚洲aⅴ乱码一区二区三区| 成人h动漫精品一区二区| 欧美中文字幕一区二区三区亚洲| 精品国精品国产| 一区二区三区不卡视频| 国产在线一区二区综合免费视频| 99麻豆久久久国产精品免费优播| 91麻豆精品久久久久蜜臀| 欧美国产精品中文字幕| 丝袜美腿高跟呻吟高潮一区| 丁香激情综合国产| 欧美一区二区精品久久911| 国产精品久久久久久久久免费相片| 亚洲国产cao| 国产成人午夜视频| 欧美一区中文字幕| 国产精品国产三级国产普通话蜜臀| 日韩av午夜在线观看| 91视视频在线直接观看在线看网页在线看 | 亚洲色图欧美偷拍| 国产一区三区三区| 欧美日本在线看| 亚洲三级在线看| 国产精品自拍一区| 8x8x8国产精品| 一区二区三区精品在线观看| 国产精品综合网| 日韩精品中文字幕在线不卡尤物 | 欧美精品一区二区高清在线观看| 一区二区高清在线| 99久久亚洲一区二区三区青草| 欧美精品一区二区三区高清aⅴ| 亚洲高清一区二区三区| gogogo免费视频观看亚洲一| 久久精品视频一区二区| 美国十次综合导航| 欧美久久久久中文字幕| 一区二区免费在线播放| 99国产精品国产精品久久| 国产日韩精品一区| 极品美女销魂一区二区三区| 欧美精品1区2区3区| 亚洲综合在线观看视频| 91麻豆swag| 亚洲同性gay激情无套| 高清国产一区二区三区| 久久免费看少妇高潮| 久久成人免费网| 日韩三级精品电影久久久| 天天操天天色综合| 欧美日韩综合一区| 婷婷久久综合九色综合绿巨人| 欧美亚洲动漫另类| 亚洲成在人线在线播放| 欧美揉bbbbb揉bbbbb| 亚洲成a人v欧美综合天堂 | 欧美精品一区二区三区久久久| 麻豆国产精品官网| 精品久久久久香蕉网| 美女国产一区二区| 精品理论电影在线观看 | www.av精品| 亚洲欧美另类图片小说| 在线国产亚洲欧美| 午夜精品福利一区二区蜜股av | 亚洲一区二区三区四区在线| 欧美在线高清视频| 亚洲狠狠爱一区二区三区| 欧美精品日日鲁夜夜添| 欧美a级理论片| 久久精品一区蜜桃臀影院| 波多野洁衣一区| 亚洲电影第三页| 精品三级在线观看| 国产不卡免费视频| 一区二区三区色| 在线成人av网站| 国产一区二区三区蝌蚪| 国产精品初高中害羞小美女文| www.欧美日韩| 视频一区视频二区中文字幕| 欧美xingq一区二区| 国产福利不卡视频| 亚洲精品视频免费观看| 91 com成人网| 成人一区二区视频| 亚洲综合在线电影| 精品国产1区二区| 波多野结衣精品在线| 亚洲午夜影视影院在线观看| 日韩欧美不卡在线观看视频| 风流少妇一区二区| 亚洲高清在线精品| 久久精品一二三| 欧美视频在线一区| 国产成人午夜视频| 天堂久久久久va久久久久| 国产夜色精品一区二区av| 欧美在线一区二区三区| 精品一区二区久久| 亚洲一区二区三区四区在线免费观看 | 国产精品大尺度| 91精品国产免费久久综合| 国产成人免费xxxxxxxx| 亚洲大型综合色站| 欧美国产日韩亚洲一区| 欧美日韩五月天| 成人性视频免费网站| 午夜亚洲国产au精品一区二区| 中文字幕二三区不卡| 91精品国产欧美日韩| 91捆绑美女网站| 国产一区二区视频在线| 亚州成人在线电影| 国产精品九色蝌蚪自拍| 日韩精品一区二区三区在线播放| 欧洲精品一区二区| caoporn国产一区二区| 麻豆精品一区二区三区| 亚洲国产综合91精品麻豆| 欧美高清在线一区二区|