亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? faq.html

?? 支持向量機 c++庫 做統計數據分類的好幫手 希望對大家有所幫助
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Thu, 16 Nov 2006 14:22:43 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(56)</li>
<ul><b>
<li><a
href="#/Q1:_Some_courses_which_have_used_libsvm_as_a_tool">Q1:_Some_courses_which_have_used_libsvm_as_a_tool</a>(1)</li>
<li><a
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(8)</li>
<li><a
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(3)</li>
<li><a
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(27)</li>
<li><a
href="#/Q5:_Probability_outputs">Q5:_Probability_outputs</a>(3)</li>
<li><a
href="#/Q6:_Graphic_interface">Q6:_Graphic_interface</a>(3)</li>
<li><a
href="#/Q7:_Java_version_of_libsvm">Q7:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q8:_Python_interface">Q8:_Python_interface</a>(5)</li>
<li><a
href="#/Q9:_MATLAB_interface">Q9:_MATLAB_interface</a>(2)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq1">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">What are changes in previous versions?</a></li>
<li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ?   </a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running (without showing any output). What should I do?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
<li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
<li class="headlines_item"><a href="#f416">For some problem sets if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f421">I would like to try different random partition for cross validation, how could I do it ?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
<li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
<li class="headlines_item"><a href="#f428">Why on windows sometimes grid.py fails?</a></li>
<li class="headlines_item"><a href="#f429">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes longer time</a></li>
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
<li class="headlines_item"><a href="#f427">Why using svm-predict -b 0 and -b 1 gives different accuracy values?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f702">On MS windows, why does python fail to load the dll file?</a></li>
<li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the dll file ?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
<li class="headlines_item"><a href="#f706">I typed "make" on a unix system, but it says "Python.h: No such file or directory?"</a></li>
<li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors</a></li>
<li class="headlines_item"><a href="#f802">Does the MATLAB interface provide a function to do scaling?</a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q1:_Some_courses_which_have_used_libsvm_as_a_tool"></a>
<a name="faq1"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
<li>
<a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
SVM tutorial in machine learning
summer school, University of Chicago, 2005.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
<br/>                                                                                
<p>
In the package there is a README file which 
details all options, data format, and library calls.
The model selection tool and the python interface
have a separate README under the directory python.
The guide
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> shows beginners how to train/test their data.
The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
: a library for support vector machines</a> discusses the implementation of
libsvm in detail.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: What are changes in previous versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.

<p> You can download earlier versions 
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ?   </b></a>
<br/>                                                                                
<p>
Please cite the following document:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is as follows
<pre>
@Manual{CC01a,
  author =	 {Chih-Chung Chang and Chih-Jen Lin},
  title =	 {{LIBSVM}: a library for support vector machines},
  year =	 {2001},
  note =	 {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
The libsvm license ("the modified BSD license")
is compatible with many
free software licenses such as GPL. Hence, it is very easy to
use libsvm in your software.
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Project."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Project."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean?</b></a>
<br/>                                                                                
<br>optimization finished, #iter = 219
<br>nu = 0.431030
<br>obj = -100.877286, rho = 0.424632
<br>nSV = 132, nBSV = 107
<br>Total nSV = 132
<p>
obj is the optimal objective value of the dual SVM problem.
rho is the bias term in the decision function

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
福利一区福利二区| 久久影音资源网| 欧美mv日韩mv亚洲| 亚洲天堂成人网| 国产一区欧美二区| 91精品国产一区二区人妖| 国产精品色哟哟| 精彩视频一区二区| 欧美日韩另类国产亚洲欧美一级| 中文字幕精品一区二区精品绿巨人 | 日韩午夜在线观看视频| 日韩理论片在线| 国产.欧美.日韩| 精品国产三级电影在线观看| 亚洲成在线观看| 欧美性三三影院| 亚洲乱码中文字幕综合| 白白色亚洲国产精品| 久久综合色一综合色88| 日本视频中文字幕一区二区三区| 91小视频免费观看| 亚洲欧洲精品一区二区三区不卡 | 中文字幕佐山爱一区二区免费| 国内精品在线播放| 日韩欧美在线观看一区二区三区| 亚洲国产成人av网| 欧美色男人天堂| 亚洲国产日韩综合久久精品| 91久久一区二区| 亚洲免费观看高清完整| 99re成人在线| 亚洲免费av高清| 一本在线高清不卡dvd| 最新成人av在线| 97精品久久久午夜一区二区三区| 中文字幕av一区二区三区| 成人妖精视频yjsp地址| 国产精品理伦片| 色吊一区二区三区| 亚洲小说欧美激情另类| 欧美亚洲国产怡红院影院| 午夜免费久久看| 欧美三区在线观看| 蜜桃久久av一区| 国产欧美日韩在线看| 粉嫩aⅴ一区二区三区四区 | www.欧美色图| 一区二区三区视频在线看| 色婷婷av一区二区三区大白胸| 亚洲激情成人在线| 制服丝袜国产精品| 国产91丝袜在线播放0| 亚洲天堂av一区| 欧美久久久久免费| 国产精品一级在线| 亚洲乱码国产乱码精品精98午夜| 欧美日韩一区二区三区免费看 | 91精品国模一区二区三区| 麻豆成人av在线| 欧美国产97人人爽人人喊| 99riav一区二区三区| 亚洲成a人片综合在线| 日韩欧美一区二区免费| jvid福利写真一区二区三区| 亚洲国产成人va在线观看天堂| 欧美精品一区视频| 91国偷自产一区二区三区成为亚洲经典 | 国产精品乱人伦| 精品视频123区在线观看| 麻豆91在线播放| 综合久久国产九一剧情麻豆| 欧美日韩一区二区三区四区| 国产一区二区三区美女| 亚洲综合精品久久| 久久久精品日韩欧美| 欧美在线免费视屏| 国产美女精品人人做人人爽 | 日韩—二三区免费观看av| 久久久久久久久99精品| 欧美少妇一区二区| 成人免费高清视频在线观看| 日本中文字幕一区| 国产精品久久久久桃色tv| 欧美精品日韩精品| 不卡影院免费观看| 捆绑紧缚一区二区三区视频| 亚洲精品视频免费看| 国产亚洲成aⅴ人片在线观看| 欧美网站大全在线观看| 高清日韩电视剧大全免费| 奇米888四色在线精品| 亚洲色图20p| 中文字幕久久午夜不卡| 精品久久久久久久久久久院品网| 欧美做爰猛烈大尺度电影无法无天| 国产在线日韩欧美| 久久99精品久久久| 日韩黄色免费电影| 亚洲乱码精品一二三四区日韩在线| 久久一区二区三区四区| 欧美一级二级三级乱码| 欧美无乱码久久久免费午夜一区 | 亚洲欧美电影院| 国产视频亚洲色图| 欧美成人精品二区三区99精品| 欧美日韩三级一区| 欧美亚洲一区二区三区四区| 99久久99久久精品国产片果冻 | 亚洲欧美一区二区三区国产精品| 久久久久久久精| 久久―日本道色综合久久| 欧美一级二级三级乱码| 欧美一区二区在线观看| 欧美一级二级三级蜜桃| 欧美一区2区视频在线观看| 欧美一级午夜免费电影| 日韩欧美中文一区| 日韩视频一区二区在线观看| 欧美久久久久免费| 欧美一级黄色大片| 日韩免费一区二区| 精品1区2区在线观看| 久久婷婷一区二区三区| 日本一区二区三区久久久久久久久不| 国产无人区一区二区三区| 国产网站一区二区三区| 中文一区在线播放| 中文字幕综合网| 性做久久久久久免费观看欧美| 亚洲午夜日本在线观看| 蜜臀av亚洲一区中文字幕| 国产综合色产在线精品| 成人伦理片在线| 色婷婷久久久综合中文字幕| 欧美日韩成人在线| 久久综合国产精品| 国产精品久久久久天堂| 亚洲午夜免费电影| 裸体歌舞表演一区二区| 成人一级黄色片| 欧美日韩欧美一区二区| 日韩欧美专区在线| 国产精品美女久久久久高潮| 亚洲一区二区三区国产| 青青草国产精品亚洲专区无| 国产激情一区二区三区桃花岛亚洲| 成人午夜视频在线观看| 欧美色倩网站大全免费| 久久综合九色综合欧美98 | 欧美激情在线一区二区三区| 一区二区成人在线| 国产一区二区91| 欧美体内she精高潮| 国产午夜精品一区二区三区视频| 亚洲精品日产精品乱码不卡| 久草中文综合在线| 一本一本大道香蕉久在线精品 | 中文字幕一区二区三区在线不卡 | 欧美精品色一区二区三区| 日韩精品综合一本久道在线视频| 国产精品国产三级国产普通话三级 | 国产精品色一区二区三区| 日韩专区欧美专区| 91网站在线观看视频| 欧美大度的电影原声| 一区二区三区在线免费播放| 精品一区二区三区av| 欧美色图激情小说| 国产精品理伦片| 国产一区二区三区在线看麻豆| 欧美日韩成人在线| 亚洲美女少妇撒尿| 国产一区二区影院| 91精品国产91热久久久做人人 | 色综合一个色综合亚洲| 精品国产免费久久| 日韩电影在线观看电影| 在线视频中文字幕一区二区| 日本一区二区综合亚洲| 精品一区二区三区免费观看 | 99在线精品一区二区三区| 成人激情免费电影网址| 精品国产亚洲一区二区三区在线观看 | 欧美电影免费观看高清完整版在线 | 天天综合网 天天综合色| 91在线一区二区三区| 国产午夜精品久久久久久免费视| 蜜臀av性久久久久蜜臀aⅴ流畅| 91久久线看在观草草青青 | 国产欧美精品一区二区三区四区| 奇米一区二区三区av| 91麻豆精品国产91久久久久久| 亚洲网友自拍偷拍| 91一区一区三区| 成人免费视频在线观看| av亚洲精华国产精华精| 国产精品成人一区二区艾草| gogogo免费视频观看亚洲一| 欧美国产精品劲爆| 99视频在线观看一区三区|