?? bp(matlab).txt
字號:
傳一個三層的簡單程序
%BP neural network
clear
inputNums=3;
outputNums=3;
hideNums=10;
maxcount=2000;
samplenum=3;
precision=0.001;
alpha=0.5;%設定值
a=0.5;%設定值
count=1;
error=zeros(1,count);
errorp=zeros(1,samplenum);
v=rand(inputNums,hideNums);
deltv=zeros(inputNums,hideNums);
dv=zeros(inputNums,hideNums);
st1=zeros(1,hideNums);
w=rand(hideNums,outputNums);
deltw=zeros(hideNums,outputNums);
dw=zeros(hideNums,outputNums);
st2=zeros(1,outputNums);
samplelist=[1,0,0;0,1,0;0,0,1];
expectlist=[1,0,0;0,1,0;0,0,1];
while (count<=maxcount)
c=1;
while (c<=samplenum)
for k=1:outputNums
d(k)=expectlist(c,k);%獲得期望輸出的向量
end
for i=1:inputNums
x(i)=samplelist(c,i);%獲得輸入的向量(數據)
end
%Forward();
for j=1:hideNums
net=0.0;
for i=1:inputNums
net=net+x(i)*v(i,j);
end
net=net-st1(j);
y(j)=1/(1+exp(-net));
end
for k=1:outputNums
net=0.0;
for j=1:hideNums
net=net+y(j)*w(j,k);
end
net=net-st2(k);
o(k)=1/(1+exp(-net));
end
%BpError(c);
errortmp=0.0;
for k=1:outputNums
errortmp=errortmp+(d(k)-o(k))^2;
end
errorp(c)=0.5*errortmp;
%end
%Backward();
for k=1:outputNums
yitao(k)=(d(k)-o(k))*o(k)*(1-o(k));
end
for j=1:hideNums
tem=0.0;
for k=1:outputNums
tem=tem+yitao(k)*w(j,k);
end
yitay(j)=tem*y(j)*(1-y(j));
end
%調整各層權值
for j=1:hideNums
for k=1:outputNums
deltw(j,k)=alpha*yitao(k)*y(j);
w(j,k)=w(j,k)+deltw(j,k)+a*dw(j,k);
dw(j,k)=deltw(j,k);
end
end
for k=1:outputNums
st2(k)=st2(k)+alpha*yitao(k);
end
for i=1:inputNums
for j=1:hideNums
deltv(i,j)=alpha*yitay(j)*x(i);
v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j);
dv(i,j)=deltv(i,j);
end
end
for j=1:hideNums
st1(j)=st1(j)+alpha*yitay(j);
end
%end
c=c+1;
end
double tmp;
tmp=0.0;
for i=1:samplenum
tmp=tmp+errorp(i)*errorp(i);
end
tmp=tmp/c;
error(count)=sqrt(tmp);
if (error(count)<precision)
break;
end
count=count+1;%訓練次數加1
end
p=1:count;
plot(p,error(p),'-');
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -