?? lms_equalizer.m
字號:
randn('seed', 0) ;rand('seed', 0) ;
%Variables%NoOfData = 8000 ; % Set no of data points used for trainingOrder = 15 ; % Set the adaptive filter orderMu = 0.01 ; % Set the step-size constantnext=1;
sizeOfIn=16;fd=1; % doppler frequencyfs=2560; % sample frequencyNs=fs/20;
x=complex(randn(NoOfData,1),randn(NoOfData,1)); % Input assumed to be whiteh=complex(rand(Order, 1),rand(Order, 1)); % System picked randomly%d = filter(h, 1, x) ; % Generate output (desired signal)r=rayleigh_new(fd,fs,Ns);y=filter(r,1,x);d=awgn(y,20,'measured');
w=complex(zeros(Order+1,1),zeros(Order+1,1));e=complex(0,0);
y=complex(zeros(NoOfData,1),zeros(NoOfData,1));
yI=0;yQ=0;eI=0;eQ=0;wI=0;wQ=0;xI=0;xQ=0;
in=complex(zeros(sizeOfIn,1),zeros(sizeOfIn,1));
%LMS Adaptation
for n = sizeOfIn : NoOfData
in=x(n:-1:n-sizeOfIn+1) ;
wI=real(w);
wQ=imag(w);
xQ=imag(in);
xI=real(in);
dI=real(d(n));
dQ=imag(d(n));
y(n)=(wI'*xI + wQ'*xQ) + (wI'*xQ - wQ'*xI)*i;
yI=real(y(n));
yQ=imag(y(n));
%Error Calculation%
e(n)=(dI-yI) + (dQ-yQ)*i;
%Update Taps%
eI=real(e(n));
eQ=imag(e(n));
w=(wI + Mu* ( eI*xI + eQ*xQ )) + (wQ + Mu* ( eI*xQ - eQ*xI))*i;
end ;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if 0for n = Order : NoOfData D = x(n:-1:n-Order+1) ; d_hat(n) = w'*D ; e(n) = d(n) - d_hat(n) ; w = w + Mu*e(n)*D ; w_err(n) = norm(h - w) ;end ;end
% Plot resultsfigure ;plot(20*log10(abs(e))) ;
title('Learning Curve') ;xlabel('Iteration Number') ;ylabel('Output Estimation Error in dB') ;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -