亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? ngram-count.html

?? 這是一款很好用的工具包
?? HTML
?? 第 1 頁 / 共 2 頁
字號:
<! $Id: ngram-count.1,v 1.33 2006/09/04 09:13:10 stolcke Exp $><HTML><HEADER><TITLE>ngram-count</TITLE><BODY><H1>ngram-count</H1><H2> NAME </H2>ngram-count - count N-grams and estimate language models<H2> SYNOPSIS </H2><B> ngram-count </B>[<B>-help</B>]<B></B><I> option </I>...<H2> DESCRIPTION </H2><B> ngram-count </B>generates and manipulates N-gram counts, and estimates N-gram languagemodels from them.The program first builds an internal N-gram count set, eitherby reading counts from a file, or by scanning text input.Following that, the resulting counts can be output back to a fileor used for building an N-gram language model in ARPA<A HREF="ngram-format.html">ngram-format(5)</A>.Each of these actions is triggered by corresponding options, asdescribed below.<H2> OPTIONS </H2><P>Each filename argument can be an ASCII file, or a compressed file (name ending in .Z or .gz), or ``-'' to indicatestdin/stdout.<DL><DT><B> -help </B><DD>Print option summary.<DT><B> -version </B><DD>Print version information.<DT><B>-order</B><I> n</I><B></B><DD>Set the maximal order (length) of N-grams to count.This also determines the order of the estimated LM, if any.The default order is 3.<DT><B>-vocab</B><I> file</I><B></B><DD>Read a vocabulary from file.Subsequently, out-of-vocabulary words in both counts or text arereplaced with the unknown-word token.If this option is not specified all words found are implicitly addedto the vocabulary.<DT><B>-vocab-aliases</B><I> file</I><B></B><DD>Reads vocabulary alias definitions from<I>file</I>,<I></I>consisting of lines of the form<BR>	<I>alias</I> <I>word</I><BR>This causes all tokens<I> alias </I>to be mapped to<I>word</I>.<I></I><DT><B>-write-vocab</B><I> file</I><B></B><DD>Write the vocabulary built in the counting process to<I>file</I>.<I></I><DT><B> -tagged </B><DD>Interpret text and N-grams as consisting of word/tag pairs.<DT><B> -tolower </B><DD>Map all vocabulary to lowercase.<DT><B> -memuse </B><DD>Print memory usage statistics.</DD></DL><H3> Counting Options </H3><DL><DT><B>-text</B><I> textfile</I><B></B><DD>Generate N-gram counts from text file.<I> textfile </I>should contain one sentence unit per line.Begin/end sentence tokens are added if not already present.Empty lines are ignored.<DT><B>-read</B><I> countsfile</I><B></B><DD>Read N-gram counts from a file.Ascii count files contain one N-gram of words per line, followed by an integer count, all separated by whitespace.Repeated counts for the same N-gram are added.Thus several count files can be merged by using <A HREF="cat.html">cat(1)</A>and feeding the result to <B>ngram-count -read -</B><B></B>(but see<A HREF="ngram-merge.html">ngram-merge(1)</A>for merging counts that exceed available memory).Counts collected by <B> -text </B>and <B> -read </B>are additive as well.Binary count files (see below) are also recognized.<DT><B>-read-google</B><I> dir</I><B></B><DD>Read N-grams counts from an indexed directory structure rooted in<B>dir</B>,<B></B>in a format developed byGoogle to store very large N-gram collections.The corresponding directory structure can be created using the script<B> make-google-ngrams </B>described in<A HREF="training-scripts.html">training-scripts(1)</A>.<DT><B>-write</B><I> file</I><B></B><DD>Write total counts to<I>file</I>.<I></I><DT><B>-write-binary</B><I> file</I><B></B><DD>Write total counts to <I> file </I>in binary format.Binary count files cannot be compressed and are typicallylarger than compressed ascii count files.However, they can be loaded faster, especially when the<B> -limit-vocab </B>option is used.<I><DT><B>-write-order</B><I> n</I><B></B><DD>Order of counts to write.The default is 0, which stands for N-grams of all lengths.<DT><B>-write</B><I>n file</I><B></B><DD>where<I> n </I>is 1, 2, 3, 4, 5, 6, 7, 8, or 9.Writes only counts of the indicated order to<I>file</I>.<I></I>This is convenient to generate counts of different orders separately in a single pass.<DT><B> -sort </B><DD>Output counts in lexicographic order, as required for<A HREF="ngram-merge.html">ngram-merge(1)</A>.<DT><B> -recompute </B><DD>Regenerate lower-order counts by summing the highest-order counts for each N-gram prefix.<DT><B> -limit-vocab </B><DD>Discard N-gram counts on reading that do not pertain to the words specified in the vocabulary.The default is that words used in the count files are automatically added tothe vocabulary.</DD></DL><H3> LM Options </H3><DL><DT><B>-lm</B><I> lmfile</I><B></B><DD>Estimate a backoff N-gram model from the total counts, and write itto<I> lmfile </I>in <A HREF="ngram-format.html">ngram-format(5)</A>.<DT><B>-nonevents</B><I> file</I><B></B><DD>Read a list of words from<I> file </I>that are to be considered non-events, i.e., thatcan only occur in the context of an N-gram.Such words are given zero probability mass in model estimation.<DT><B> -float-counts </B><DD>Enable manipulation of fractional counts.Only certain discounting methods support non-integer counts.<DT><B> -skip </B><DD>Estimate a ``skip'' N-gram model, which predicts a word byan interpolation of the immediate context and the context one word prior.This also triggers N-gram counts to be generated that are one word longer than the indicated order.The following four options control the EM estimation algorithm used forskip-N-grams.<DT><B>-init-lm</B><I> lmfile</I><B></B><DD>Load an LM to initialize the parameters of the skip-N-gram.<DT><B>-skip-init</B><I> value</I><B></B><DD>The initial skip probability for all words.<DT><B>-em-iters</B><I> n</I><B></B><DD>The maximum number of EM iterations.<DT><B>-em-delta</B><I> d</I><B></B><DD>The convergence criterion for EM: if the relative change in log likelihoodfalls below the given value, iteration stops.<DT><B> -count-lm </B><DD>Estimate a count-based interpolated LM using Jelinek-Mercer smoothing(Chen &amp; Goodman, 1998).Several of the options for skip-N-gram LMs (above) apply.An initial count-LM in the format described in <A HREF="ngram.html">ngram(1)</A>needs to be specified using<B>-init-lm</B>.<B></B>The options<B> -em-iters </B>and<B> -em-delta </B>control termination of the EM algorithm.Note that the N-gram counts used to estimate the maximum-likelihoodestimates come from the <B> -init-lm </B>model.The counts specified with<B> -read </B>or<B> -text </B>are used only to estimate the smoothing (interpolation weights).<DT><B> -unk </B><DD>Build an ``open vocabulary'' LM, i.e., one that contains the unknown-wordtoken as a regular word.The default is to remove the unknown word.<DT><B>-map-unk</B><I> word</I><B></B><DD>Map out-of-vocabulary words to <I>word</I>,<I></I>rather than the default<B> &lt;unk&gt; </B>tag.<DT><B> -trust-totals </B><DD>Force the lower-order counts to be used as total counts in estimatingN-gram probabilities.Usually these totals are recomputed from the higher-order counts.<DT><B>-prune</B><I> threshold</I><B></B><DD>Prune N-gram probabilities if their removal causes (training set)perplexity of the model to increase by less than<I> threshold </I>relative.<DT><B>-minprune</B><I> n</I><B></B><DD>Only prune N-grams of length at least<I>n</I>.<I></I>The default (and minimum allowed value) is 2, i.e., only unigrams are excludedfrom pruning.

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产成人亚洲综合a∨猫咪| 日韩免费观看高清完整版| 天天色天天操综合| 国产精品美女一区二区三区 | 欧美不卡一区二区| 在线一区二区观看| 国产高清精品久久久久| 日本美女一区二区三区| 亚洲嫩草精品久久| 欧美日韩国产三级| 在线观看中文字幕不卡| 亚洲午夜精品网| 亚洲成av人**亚洲成av**| 亚洲色大成网站www久久九九| 制服丝袜av成人在线看| 欧美亚洲自拍偷拍| 欧美制服丝袜第一页| 欧洲视频一区二区| 91精品国产品国语在线不卡| 91精品国产91久久综合桃花 | 亚洲6080在线| 手机精品视频在线观看| 日本aⅴ免费视频一区二区三区| 蜜臀av一区二区在线观看| 麻豆成人免费电影| 高清在线观看日韩| 欧美性xxxxxx少妇| xnxx国产精品| 日韩欧美亚洲国产另类| 日韩欧美aaaaaa| 精品国内片67194| 国产亚洲一区二区三区在线观看| 久久一夜天堂av一区二区三区| 精品久久久久久久久久久久久久久久久 | 久久日韩粉嫩一区二区三区| 韩日av一区二区| 成人免费电影视频| av一区二区三区| 国产一区在线精品| 成人性生交大片免费看在线播放| 狠狠色伊人亚洲综合成人| 狠狠狠色丁香婷婷综合激情| 久久99精品一区二区三区| 国产一区二区三区最好精华液| 麻豆中文一区二区| 成人黄页在线观看| 91精品国产一区二区三区香蕉| 日韩欧美国产1| 日韩一区中文字幕| 免费xxxx性欧美18vr| 成人综合婷婷国产精品久久蜜臀 | 欧美一区二区三区视频免费播放 | 99久久综合国产精品| 日韩欧美自拍偷拍| 中文字幕亚洲综合久久菠萝蜜| 亚洲电影第三页| 福利电影一区二区三区| 69堂成人精品免费视频| 久久精品亚洲乱码伦伦中文| 蜜桃视频免费观看一区| 99re热视频精品| 26uuu国产在线精品一区二区| 久久精品水蜜桃av综合天堂| 欧美国产日韩a欧美在线观看| 丝袜国产日韩另类美女| 91麻豆免费观看| 国产精品萝li| 成人午夜av在线| 国产亚洲成av人在线观看导航 | 99r国产精品| 国产精品美女久久久久aⅴ| 国产91富婆露脸刺激对白| 日韩一区二区三区av| 香蕉久久夜色精品国产使用方法 | 精品国产一区二区三区久久久蜜月| 成人免费在线播放视频| 成人国产在线观看| 国产精品国产三级国产aⅴ原创| 国产精品888| 欧美国产一区在线| www.在线欧美| 亚洲不卡在线观看| 日韩欧美亚洲国产另类| 全国精品久久少妇| 久久色视频免费观看| fc2成人免费人成在线观看播放| 亚洲欧美一区二区三区国产精品| 99re这里都是精品| 日日骚欧美日韩| 久久久91精品国产一区二区三区| 免费黄网站欧美| 亚洲综合一区在线| 精品视频一区二区不卡| 亚洲二区视频在线| 久久婷婷国产综合精品青草| 不卡av免费在线观看| 亚洲综合一区二区三区| 91精品福利在线| 国产一区二区视频在线| 亚洲制服丝袜av| 亚洲精品一区二区精华| 色又黄又爽网站www久久| 美国三级日本三级久久99 | 丝袜亚洲另类欧美综合| 国产精品免费人成网站| 91久久一区二区| 国产成a人亚洲| 青娱乐精品视频| 亚洲v日本v欧美v久久精品| 久久久久久一二三区| 欧美在线你懂得| 97超碰欧美中文字幕| 国产成人午夜视频| 久久99久国产精品黄毛片色诱| 亚洲视频小说图片| 久久嫩草精品久久久精品| 欧美影视一区在线| 91丝袜美腿高跟国产极品老师| 麻豆一区二区三区| 麻豆国产一区二区| 青青草原综合久久大伊人精品优势| 午夜精品视频一区| 五月婷婷久久综合| 亚洲成人777| 亚洲男人天堂一区| 亚洲最大成人网4388xx| 亚洲丝袜制服诱惑| 99re这里都是精品| 欧美性一级生活| 国内欧美视频一区二区| 免费观看91视频大全| 奇米777欧美一区二区| 福利91精品一区二区三区| 欧美日韩高清在线| 国产精品对白交换视频| 婷婷综合久久一区二区三区| 成人一区二区三区中文字幕| 欧美精品丝袜中出| 亚洲欧美另类图片小说| 国产资源精品在线观看| 欧美视频在线一区二区三区 | 91精品国产综合久久香蕉麻豆| 国产欧美一区二区在线| 日韩电影一二三区| 欧美午夜一区二区三区免费大片| 久久精品欧美日韩精品| 蜜乳av一区二区三区| 欧美亚洲高清一区二区三区不卡| 久久久精品国产99久久精品芒果| 亚洲不卡一区二区三区| 在线精品视频免费播放| 伊人婷婷欧美激情| eeuss鲁一区二区三区| 久久免费看少妇高潮| 精品在线播放午夜| 久久这里只有精品首页| 久久av老司机精品网站导航| 欧美日韩国产免费| 日本va欧美va瓶| 欧美成人精品1314www| 日韩av中文在线观看| 国产一区二区精品久久99| 精品日产卡一卡二卡麻豆| 麻豆成人在线观看| 精品噜噜噜噜久久久久久久久试看| 另类欧美日韩国产在线| 久久亚洲精华国产精华液 | 日韩三级中文字幕| 国产中文字幕一区| 国产精品不卡在线观看| 欧美四级电影在线观看| 久久精品久久综合| 国产精品成人在线观看| 欧美性色综合网| 精品在线免费视频| 一区二区三区在线观看动漫| 6080国产精品一区二区| 国模大尺度一区二区三区| 亚洲另类在线视频| 欧美一级夜夜爽| 成人av网站免费| 看电影不卡的网站| 亚洲电影激情视频网站| 国产精品欧美精品| 日韩欧美久久久| 欧美日韩国产小视频| 99久久精品国产毛片| 国产精品2024| 亚洲成a人片在线不卡一二三区| 国产欧美一二三区| 久久久综合精品| 欧美电影免费提供在线观看| 欧美写真视频网站| 色偷偷久久一区二区三区| 高清视频一区二区| 国产ts人妖一区二区| 国产一区在线不卡| 国产一区二区在线电影| 精品一区二区日韩| 国产老女人精品毛片久久|