?? parzenml.m
字號:
%PARZENML Optimum smoothing parameter in Parzen density estimation.% % H = PARZENML(A,FID)% % INPUT % A input dataset% FID File ID to write progress to (default [], see PRPROGRESS)%% OUTPUT% H scalar smoothing parameter%% DESCRIPTION% Maximum likelihood estimation for the smoothing parameter H in the % Parzen denstity estimation of the data in A. A leave-one out % maximum likelihood estimation is used. %% This routine does not use class information and computes a single% smoothing parameter. It may be profitable to scale the data before% calling it. eg. WS = SCALEM(A,'variance'); A = A*WS; If desired,% remove unlabeled objects first, e.g. by SELDAT.% % SEE ALSO% DATASETS, MAPPINGS, SCALEM, SELDAT, PARZENM, PARZENDC, PRPROGRESS% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% $Id: parzenml.m,v 1.8 2006/03/07 16:15:54 duin Exp $function h = parzenml(A,fid) prtrace(mfilename); if nargin < 2, fid = []; end [m,k] = size(A); DD= distm(+A) + diag(1e70*ones(1,m)); E = min(DD); h1 = sqrt(max(E)); % initial estimate of h F1 = derl(DD,E,h1,k); % derivative prprogress(fid,'\nparzenml: ML Smoothing Parameter Optimization\n') prprogress(fid,' h = %5.3f F = %8.3e \n',h1,F1); if abs(F1) < 1e-70 h = h1; prwarning(4,'jump out\n'); return; end a1 = (F1+m*k)*h1*h1; h2 = sqrt(a1/(m*k)); % second guess F2 = derl(DD,E,h2,k); % derivative prprogress(fid,' h = %5.3f F = %8.3e \n',h2,F2); if (abs(F2) < 1e-70) | (abs(1e0-h1/h2) < 1e-6) h = h2; prwarning(4,'jump out\n'); return end % find zero-point of derivative to optimize h^2 % stop if improvement is small, or h does not change significantly alf = 1; while abs(1e0-F2/F1) > 1e-4 & abs(1e0-h2/h1) > 1e-3 & abs(F2) > 1e-70 h3 = (h1*h1*h2*h2)*(F2-F1)/(F2*h2*h2-F1*h1*h1); if h3 < 0 % this should not happen h3 = sqrt((F2+m*k)*h2*h2/(m*k)); else h3 = sqrt(h3); end h3 = h2 +alf*(h3-h2); F3 = derl(DD,E,h3,k); prprogress(fid,' h = %5.3f F = %8.3e \n',h3,F3); F1 = F2; F2 = F3; h1 = h2; h2 = h3; alf = alf*0.99; % decrease step size end h = h2; prprogress(fid,'parzenml finished')returnfunction F = derl(DD,E,h,k) % computation of the likelihood derivative for Parzen density % given distances D and their object minima E (for increased accuracy) m = size(DD,1); Y = (DD-repmat(E,m,1))/(2*h*h); % correct for minimum distance to save accuracy IY = find(Y<20); % take small distance only, others don't contribute P = zeros(m,m); P(IY) = exp(-Y(IY)); PP = sum(P,2)'; FU = repmat(realmax,1,m); J = find(PP~=0); FU(J) = 1./PP(J); FF = sum(DD.*P,2); F = (FU*FF)./(h*h) - m*k;return
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -