亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? clevals.m

?? 模式識(shí)別常用功能函數(shù)
?? M
字號(hào):
%CLEVALS Classifier evaluation (feature size/learning curve), bootstrap possible% % 	E = CLEVALS(A,CLASSF,FEATSIZE,TRAINSIZES,NREPS,T,FID)%% INPUT%   A          Training dataset%   CLASSF     Classifier to evaluate%   FEATSIZE   Vector of feature sizes%                (default: 1:K, where K is the number of features in A)%   TRAINSIZES Vector of class sizes, used to generate subsets of A% 	           	 (default [2,3,5,7,10,15,20,30,50,70,100])%   NREPS 		 Number of repetitions (default 1)%   T      		 Tuning set, or 'bootstrap' (default [], i.e. use remaining%             		objects in A)%		FID				 File ID to write progress to (default 0, i.e. no report)%% OUTPUT%   E       	 Error structure (see PLOTR)%% DESCRIPTION % Generates at random, for all feature sizes defined in FEATSIZES or all% class sizes defined in TRAINSIZES, training sets out of the dataset A and% uses these for training the untrained classifier CLASSF. CLASSF may also% be a cell array of untrained classifiers; in this case the routine will be% run for all of them. The resulting trained classifiers are tested on all% objects in A. This procedure is then repeated N times.%% Training set generation is done "with replacement" and such that for each% run the larger training sets include the smaller ones and that for all% classifiers the same training sets are used.% % If CLASSF is fully deterministic, this function uses the RAND random% generator and thereby reproduces if its seed is reset (see RAND). % If CLASSF uses RANDN, its seed may have to be set as well.%% Use FID = 1 to report progress to the command window.% % EXAMPLES% See PREX_CLEVAL.%% SEE ALSO% MAPPINGS, DATASETS, CLEVALB, TESTC, PLOTR% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: clevals.m,v 1.3 2003/10/19 14:42:30 bob Exp $function e = clevals(a,classf,featsizes,learnsizes,nreps,t,fid) 	prtrace(mfilename);  if (nargin < 7)		fid = 0; 	end;	if (nargin < 6)		prwarning(2,'no tuning set supplied, bootstrapping');		t = [];	end;  if (nargin < 5)		prwarning(2,'number of repetitions not specified, assuming NREPS = 1');		nreps = 1; 	end;	% If a single mapping is given, convert it to a 1 x 1 cell array.  if (ismapping(classf)), classf = {classf}; end	% Correct for old argument order.  if (isdataset(classf)) & (ismapping(a))   	tmp = a; a = classf; classf = {tmp};  end  if (isdataset(classf)) & (iscell(a)) & (ismapping(a{1}))   	tmp = a; a = classf; classf = tmp;  end  if ~iscell(classf), classf = {classf}; end	% Assert that all is right.  isdataset(a); ismapping(classf{1});		% Remove requested class sizes that are larger than the size of the	% smallest class.  mc = classsizes(a); [m,k,c] = getsize(a);	% Defaults for size arrays.	if (nargin < 4) 		prwarning(2,'vector of training set class sizes not specified, assuming [2,3,5,7,10,15,20,30,50,70,100]'); 		learnsizes = [2,3,5,7,10,15,20,30,50,70,100]; 	end;  if (nargin < 3)		prwarning(2,'vector of feature sizes not specified, assuming K'); 		featsizes = k;	end;	learncurve = 0; featcurve = 0;	if (isempty(featsizes))									% Learning curve.		toolarge = find(learnsizes >= min(mc));		if (~isempty(toolarge))			prwarning(2,['training set class sizes ' num2str(learnsizes(toolarge)) ...									 ' larger than the minimal class size in A; removed them']);		  learnsizes(toolarge) = [];		end		learnsizes = learnsizes(:)';		featsizes  = k;		sizes = learnsizes;		learncurve = 1;	else																		% Feature size curve.		toolarge = find(featsizes > k);		if (~isempty(toolarge))			prwarning(2,['feature sizes ' num2str(featsizes(toolarge)) ...									 ' larger than number of features in A; removed them']);		  featsizes(toolarge) = [];		end		if (max(size(learnsizes)) > 1)			error('For a feature size curve, specify a scalar LEARNSIZE.');		end;	  featsizes = featsizes(:)';		sizes = featsizes;		featcurve = 1;	end;	% Fill the error structure.  nw = length(classf(:));  datname = getname(a);  e.error   = zeros(nw,length(sizes));  e.std     = zeros(nw,length(sizes));  e.xvalues = sizes(:)';  e.n       = nreps;  e.names   = [];  if (nreps > 1)  	e.ylabel= ['Averaged error (' num2str(nreps) ' experiments)'];  elseif (nreps == 1)  	e.ylabel = 'Error';  else		error('Number of repetitions NREPS should be >= 1.');	end;  if (~isempty(datname))		if (isempty(t))			 	e.title = ['Bootstrapped learning curve on ' datname];		else			 	e.title = ['Learning curve on ' datname];	 	end	end; 	if (learncurve)   	e.xlabel = 'Training set size'; 	else 		e.xlabel = 'Feature size'; 	end;  if (sizes(end)/sizes(1) > 20)  	e.plot = 'semilogx'; 				% If range too large, use a log-plot for X.  end  	% Report progress.	if (isempty(t))		if (learncurve)		  fprintf(fid,['\nBootstrapped classifier evaluation (learning curve): \n' ...  		    '    %i classifiers, %i repetitions, %i sizes ['],nw,nreps,length(sizes));		else		  fprintf(fid,['\nBootstrapped classifier evaluation (feature size curve): \n' ...  		    '    %i classifiers, %i repetitions, %i sizes ['],nw,nreps,length(sizes));		end	else		if (featcurve)		  fprintf(fid,['\nClassifier evaluation (learning curve): \n' ...  		    '    %i classifiers, %i repetitions, %i sizes ['],nw,nreps,length(sizes));		else		  fprintf(fid,['\nClassifier evaluation (feature size curve): \n' ...  		    '    %i classifiers, %i repetitions, %i sizes ['],nw,nreps,length(sizes));		end	end  fprintf(fid,' %i ',sizes)  fprintf(fid,']\n');	% Store the seed, to reset the random generator later for different	% classifiers.  seed = rand('state');	% Loop over all classifiers (with index WI).  for wi = 1:nw		% Assert that CLASSF{WI} is an untrained mapping.  	isuntrained(classf{wi});  	name = getname(classf{wi});    fprintf(fid,'Classifier: %s\n',name); e.names = char(e.names,name);		% E1 will contain the error estimates.  	e1 = zeros(nreps,length(sizes));		% Take care that classifiers use same training set.  	rand('state',seed); seed2 = seed;		% For N repetitions...  	for i = 1:nreps			if (isempty(t))  			% Bootstrap. Store the randomly permuted indices of samples of class  			% CI to use in this training set in JR(CI,:).    		JR = zeros(c,max(learnsizes));    		for ci = 1:c    			JC = findnlab(a,ci);  				  				% Necessary for reproducable training sets: set the seed and store  				% it after generation, so that next time we will use the previous one.    			rand('state',seed2);		    			R = ceil(rand(1,max(learnsizes))*length(JC));    			JR(ci,:) = JC(R)';    			seed2 = rand('state');     		end					t = a;			end  		% Either the outer loop or the inner loop will be traversed just once,			% depending on whether we want to find a learning curve or feature			% size curve.  		ii = 0;    	for li = 1:length(learnsizes)  			for fi = 1:length(featsizes)  				ii = ii + 1;    			% Ja will contain the indices for this training set, Jt for					% the tuning set.    			Ja = [];       		for ci = 1:c      			Ja = [Ja;JR(ci,1:learnsizes(li))'];       		end;										Jt = setdiff(1:m,Ja);    				    			% Train classifier CLASSF{WI} on this training set and   				% calculate error on tuning set.					if (learncurve)	        	e1(i,ii) = testc(a, ...														 a(Ja,1:featsizes(fi))*classf{wi});					else	        	e1(i,ii) = testc(t(Jt,1:featsizes(fi)), ...														 a(Ja,1:featsizes(fi))*classf{wi});					end;     			fprintf(fid,'.');    		end  		end      fprintf(fid,'\n');  	end		% Calculate average error and standard deviation for this classifier		% (or set the latter to zero if there's been just 1 repetition).  	e.error(wi,:) = mean(e1,1);  	if (nreps == 1)  		e.std(wi,:) = zeros(1,size(e.std,2));  	else  		e.std(wi,:) = std(e1)/sqrt(nreps);  	end  end  % The first element is the empty string [], remove it.  e.names(1,:) = [];return

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久一区二区三区国产精品| 国产精品视频看| 成人黄色大片在线观看| 亚洲电影欧美电影有声小说| 久久美女艺术照精彩视频福利播放| 欧美在线一区二区三区| 国产精品77777| 另类人妖一区二区av| 一区二区理论电影在线观看| 中文字幕精品—区二区四季| 制服丝袜成人动漫| 日本黄色一区二区| 成人综合婷婷国产精品久久免费| 日韩av不卡一区二区| 亚洲精品高清在线| 国产精品视频九色porn| 精品美女一区二区| 欧美精品久久一区| 欧美视频一区二区三区在线观看| 成人h精品动漫一区二区三区| 视频一区中文字幕国产| 亚洲三级小视频| 国产精品欧美久久久久一区二区 | 99国产一区二区三精品乱码| 日韩av在线播放中文字幕| 亚洲精品免费播放| 成人欧美一区二区三区小说| 国产偷v国产偷v亚洲高清| 欧美va在线播放| 日韩一区二区三区观看| 欧美剧在线免费观看网站| 在线国产亚洲欧美| 在线观看av不卡| 日本道色综合久久| 色妞www精品视频| 一本到不卡免费一区二区| 99精品1区2区| 日本精品一区二区三区高清 | 亚洲国产欧美一区二区三区丁香婷| 综合色天天鬼久久鬼色| 中文字幕一区二区三区四区不卡 | 亚洲男人的天堂av| 亚洲欧美日韩国产一区二区三区| 亚洲欧洲日本在线| 亚洲视频每日更新| 亚洲精品国产一区二区三区四区在线 | 美国一区二区三区在线播放| 日韩中文字幕区一区有砖一区| 亚洲成人激情社区| 免费不卡在线观看| 国产在线不卡一卡二卡三卡四卡| 精品一区二区免费在线观看| 激情都市一区二区| 国产精品99久久久久久久vr | 欧美性生活久久| 欧美三级日韩在线| 欧美成人a视频| 欧美不卡一区二区三区四区| 久久一夜天堂av一区二区三区| 国产亚洲精品超碰| 国产精品福利av| 一级做a爱片久久| 五月天一区二区三区| 麻豆精品在线播放| 国产美女精品在线| 91丝袜美女网| 欧美精品三级日韩久久| 久久夜色精品国产噜噜av| 日本一区二区三区视频视频| 亚洲欧美另类综合偷拍| 视频一区二区三区中文字幕| 国内精品不卡在线| 色94色欧美sute亚洲线路一久| 欧美日韩国产首页在线观看| 欧美xxxx在线观看| 亚洲女性喷水在线观看一区| 日本欧美一区二区三区乱码| 国产高清不卡二三区| 色偷偷一区二区三区| 日韩亚洲欧美一区二区三区| 国产欧美日韩精品一区| 依依成人综合视频| 麻豆精品视频在线观看免费| 99久精品国产| 91精品国产黑色紧身裤美女| 中文字幕乱码久久午夜不卡 | 在线观看www91| 久久久久久亚洲综合| 一区二区三区欧美视频| 黄色日韩三级电影| 欧美亚洲日本国产| 国产日产欧美一区| 视频一区视频二区中文| 99久久久精品| 欧美成人精品二区三区99精品| 亚洲视频一二区| 国产精品99久久久久久有的能看 | 欧美色图片你懂的| 国产日韩欧美a| 日韩精品久久久久久| av资源网一区| 久久亚洲欧美国产精品乐播| 亚洲韩国一区二区三区| 成人精品视频.| 欧美xxxx老人做受| 日韩电影在线观看电影| 91免费视频网址| 国产精品欧美经典| 国产永久精品大片wwwapp| 欧美精品乱码久久久久久| 日韩一区在线免费观看| 国产精品中文欧美| 欧美一区二区三区视频免费| 一区二区久久久| av一区二区三区| 欧美国产一区在线| 国产在线精品视频| 精品国产乱码久久久久久蜜臀| 亚洲国产欧美在线| 在线观看亚洲成人| 亚洲欧美另类久久久精品| 成人小视频在线观看| 久久婷婷成人综合色| 麻豆91精品91久久久的内涵| 欧美肥妇free| 午夜久久电影网| 欧美日韩综合色| 亚洲午夜在线视频| 欧美午夜片在线观看| 亚洲美女偷拍久久| 一本一道综合狠狠老| 中文字幕一区日韩精品欧美| 北条麻妃一区二区三区| 国产精品免费av| 99国产精品久| 一区二区三区不卡在线观看| 91久久精品日日躁夜夜躁欧美| 1024精品合集| 在线亚洲+欧美+日本专区| 亚洲精品欧美在线| 欧美伊人久久久久久久久影院| 亚洲综合区在线| 欧美日韩国产另类不卡| 午夜精品久久久久久久99水蜜桃| 欧美体内she精视频| 亚洲风情在线资源站| 555夜色666亚洲国产免| 男女男精品视频网| 精品成人一区二区三区四区| 国产一区二区三区| 中文字幕不卡三区| 91色综合久久久久婷婷| 亚洲一区二区在线免费看| 欧美日韩成人一区| 久久电影网站中文字幕| 久久精品免费在线观看| 成人av免费网站| 一区二区三区毛片| 在线成人高清不卡| 久久99在线观看| 国产精品黄色在线观看| 欧美在线啊v一区| 美女爽到高潮91| 国产精品美女久久久久aⅴ| 99re热视频精品| 亚洲香肠在线观看| 精品国产伦一区二区三区观看方式| 国产成人综合在线观看| 亚洲精品高清在线| 欧美变态tickling挠脚心| 国产成人精品综合在线观看| 夜夜精品浪潮av一区二区三区| 欧美丰满美乳xxx高潮www| 国产精品一区二区视频| 亚洲人一二三区| 欧美mv和日韩mv的网站| 播五月开心婷婷综合| 天堂成人免费av电影一区| 国产三级三级三级精品8ⅰ区| 91麻豆高清视频| 美国欧美日韩国产在线播放| 亚洲国产精华液网站w| 欧美性感一区二区三区| 久久精品国产**网站演员| 亚洲视频在线一区| 欧美精品一区二区高清在线观看| 99久久免费视频.com| 精品一区二区在线播放| 亚洲欧美日韩系列| 久久综合久久99| 欧美最猛性xxxxx直播| 国产乱码精品一品二品| 天天av天天翘天天综合网色鬼国产 | 欧美v国产在线一区二区三区| 99精品欧美一区二区三区小说| 免费在线看成人av| 玉足女爽爽91| 欧美激情综合在线| 精品少妇一区二区三区日产乱码| 91一区二区三区在线观看|