?? klldc.m
字號:
%KLLDC Linear classifier built on the KL expansion of the common covariance matrix% % W = KLLDC(A,N)% W = KLLDC(A,ALF)% % INPUT% A Dataset% N Number of significant eigenvectors % ALF 0 < ALF <= 1, percentage of the total variance explained (default: 0.9)%% OUTPUT% W Linear classifier %% DESCRIPTION % Finds the linear discriminant function W for the dataset A. This is done % by computing the LDC on the data projected on the first eigenvectors of% the averaged covariance matrix of the classes. Either first N eigenvectors% are used or the number of eigenvectors is determined such that ALF, the % percentage of the total variance is explained. (Karhunen Loeve expansion)%% SEE ALSO% MAPPINGS, DATASETS, PCLDC, KLM, FISHERM% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: klldc.m,v 1.8 2003/11/22 23:20:38 bob Exp $function W = klldc(a,n) prtrace(mfilename); if nargin < 2 n = []; prwarning(4,'number of significant eigenvectors not supplied, 0.9 variance explained'); end if nargin == 0 | isempty(a) W = mapping('klldc',{n}); W = setname(W,'KL Bayes-Normal-1'); return; end islabtype(a,'crisp','soft'); isvaldset(a,2,2); % at least 2 object per class, 2 classes v = klm(a,n); W = v*ldc(a*v); W = setname(W,'KL Bayes-Normal-1'); W = setcost(W,a); return
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -