亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? mapping.m

?? 模式識(shí)別常用功能函數(shù)
?? M
字號(hào):
%MAPPING Mapping class constructor%%	W = MAPPING(MAPPING_FILE, MAPPING_TYPE, DATA, LABELS, SIZE_IN, SIZE_OUT)%% A map/classifier object is constructed. It may be used to map a dataset A% on another dataset B by B = mapd(A,W) or by training a mapping using an% untrained mapping W and a dataset A: V = mapd(A,W) or by modifying,% (or combining) a mapping W with another mapping V: Wnew = mapd(V,W);% These operations may also be written as B = A*W, V = A*W or Wnew = V*W.%% Note that mappings are usually not defined by PRTools users, but just by% PRTools programmers that like to add new tools for training or data% manupulation. See FISHERC or LDC for simple examples of a MAPPING construct.%% MAPPING_FILE       name of the routine used for learning or executing the%                    mapping. This routine (e.g. 'mapfile') should accept and%                    execute the following types of calls, depending on the%                    value of MAPPING_TYPE:%%    MAPPING_TYPE = 'untrained': V = mapfile(A,W) %                    for training the untrained mapping W by a dataset A,%                    resulting in a trained mapping V. This may be called as %                    V = A*W.%    MAPPING_TYPE = 'trained':   D = mapfile(B,W)%                    for mapping a dataset B by the mapping W resulting in a%                    dataset D. This may be called as D = B*W. W is the result%                    of training an untrained mapping V by a dataset A: %                    W = A*V. Consequently D = B*(A*V).%    MAPPING_TYPE = 'combiner: V2 = mapfile(V1,W), such that %                    D = B*V2 is consistent with D = B*V1*W and thereby %                    also with D = mapfile(B*V1,W).%    MAPPING_TYPE = 'fixed': D = mapfile(A,W) or D = A*W.%                    In practice there is not much difference between a%                    trained and a fixed mapping. The first is found from%                    data, the latter is defined directly by its parameters.%                   % MAPPING_TYPE       string defining the type of mapping:%                   'untrained', 'trained', "combiner' or 'fixed', see above.%                    Default is 'untrained'. MAPPING(MAPPING_FILE,DATA) is%                    equivalent to MAPPING(MAPPING_FILE,'untrained',DATA)%% DATA               Data, structure or cell array necessary for defining the%                    mapping, e.g. the weights of a neural network. DATA is%                    just used in the MAPPING_FILE for executing the mapping.% LABELS             Array with labels to be used as feature labels for the%                    dataset resulting by executing the mapping. So at least%                    as many labels as defined by SIZE_OUT has to be supplied.% SIZE_IN            Input dimensionality or size vector describing its shape,%                    e.g. in case the input space is derived from an image.%                    For a classifier SIZE_IN is the feature size.% SIZE_OUT           Output dimensionality or size vector describing its%                    shape, e.g. in case the output space should represent an%                    image. For a classifier SIZE_OUT is the number of%                    classes. Default is the number of labels in LABELS.%                    SIZE_IN and SIZE_OUT are just used for error checking.%                    If SIZE_IN is not supplied they are both set to 0 and %                    checking is skipped.%% Other parameter fields may be set to define the mapping further by%%	W = MAPPING(MAPPING_FILE, MAPPING_TYPE, DATA, LABELS, ...%                                             'field1',V1,'field2',V2, ...)% or by%%	W = MAPPING(MAPPING_FILE, MAPPING_TYPE, DATA, LABELS, SIZE_IN, ...%                                      SIZE_OUT,'field1',V1,'field2',V2, ...)%% The following fields are possible (if not set defaults are supplied):%% SCALE               Output multiplication factor. If SCALE is a scalar all%                     multiplied by it. SCALE may also be a vector with size%                     as defined by SIZE_OUT to set separate scalings for each%                     output.% OUT_CONV            0,1,2,3 for defining the desired output conversion:%                     0 - no(default), 1: SIGM, 2: NORMM or 3: SIGM and NORMM.%                     These values are set by cnormc in case of 2-class%                     discriminants (OUTCONV = 1) and by CLASSC%                     (OUT_CONV = OUT_CONV+2) to convert densities and%                     sigmoidal outputs to normalised posterior probabilities.% COST                Classification costs in case the mapping defines a%                     classifier. See SETCOST.% NAME                String with mapping name% USER                User definable variable%% All parameters are stored in fields corresponding to the above names.% Parameter fields of a given mapping may also be changed by:%%	W = SET(W,'field1',V1,'field2',V2, ...)%% They may also be set by the routines SETMAPPING_FILE, SETMAPPING_TYPE, % SETDATA, SETLABELS, SETSIZE_IN, SETSIZE_OUT, SETSIZE, SETSCALE, SETOUT_CONV,% SETCOST, SETNAME and SETUSER. Fields may be retrieved by%%	VARARGOUT = GET(W,'field1','field2', ...)%% or by the routines GETMAPPING_FILE, GETMAPPING_TYPE, GETDATA, GETSIZE_IN,% GETSIZE_OUT, GETSCALE, GETOUTCONV, GETCOST, GETNAME and GETUSER. %% See also DATASETS, MAPPINGS

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人欧美一区二区三区视频网页| 亚洲男人天堂一区| caoporn国产精品| 日韩电影在线观看网站| 中文久久乱码一区二区| 欧美一区二区三区视频免费| av成人老司机| 国产一区91精品张津瑜| 偷拍日韩校园综合在线| 成人免费一区二区三区视频| 久久这里都是精品| 欧美一区二区三区成人| 色综合一个色综合| 国产精品12区| 久久精品久久99精品久久| 亚洲欧美日本在线| 国产精品久久久久久久浪潮网站| 日韩欧美一区二区视频| 欧美日韩在线播放三区四区| av亚洲精华国产精华精华| 国模娜娜一区二区三区| 日韩va亚洲va欧美va久久| 综合中文字幕亚洲| 国产精品三级电影| 国产亚洲自拍一区| 久久综合色天天久久综合图片| 欧美精品一二三区| 欧美日韩亚洲国产综合| 91黄色小视频| 91麻豆自制传媒国产之光| 国产91精品免费| 粉嫩久久99精品久久久久久夜| 国内精品视频一区二区三区八戒| 日韩**一区毛片| 日欧美一区二区| 三级一区在线视频先锋 | 中文字幕av一区二区三区高| 欧美肥胖老妇做爰| 欧美一卡2卡三卡4卡5免费| 欧美日韩精品是欧美日韩精品| 在线免费观看日本一区| 色婷婷综合久久久久中文| 日本精品视频一区二区| 色www精品视频在线观看| 在线观看日韩精品| 欧美午夜电影一区| 欧美日韩免费高清一区色橹橹 | 欧美日韩国产综合草草| 色视频欧美一区二区三区| 91视频com| 欧美亚洲国产bt| 欧美午夜一区二区三区| 欧美丰满一区二区免费视频| 欧美一区二区三区影视| 欧美tk—视频vk| 国产女主播在线一区二区| 国产精品久久三区| 亚洲午夜视频在线观看| 午夜精品在线看| 美女免费视频一区二区| 国产福利不卡视频| 色婷婷亚洲综合| 欧美一级电影网站| 久久色在线视频| 欧美激情一区在线| 亚洲精品乱码久久久久久日本蜜臀| 亚洲黄色尤物视频| 日韩国产欧美三级| 国产麻豆精品一区二区| 色综合一区二区| 欧美一三区三区四区免费在线看| 久久久久久久综合色一本| 国产精品乱人伦中文| 亚洲综合一区二区精品导航| 免费在线观看不卡| 成人av集中营| 欧美精品 国产精品| 中文字幕精品一区二区三区精品| 亚洲在线中文字幕| 久久av中文字幕片| 91色porny在线视频| 欧美成人vr18sexvr| 中文字幕一区二区三区蜜月| 日韩成人av影视| caoporen国产精品视频| 91麻豆精品国产91久久久使用方法| 久久久久国产精品麻豆ai换脸 | 欧美调教femdomvk| 久久噜噜亚洲综合| 亚洲国产成人av好男人在线观看| 国产美女视频一区| 精品视频全国免费看| 中文字幕 久热精品 视频在线| av亚洲产国偷v产偷v自拍| 欧美三日本三级三级在线播放| 久久久久久亚洲综合影院红桃 | 日韩欧美一区中文| 综合色天天鬼久久鬼色| 精东粉嫩av免费一区二区三区| 99久久精品99国产精品 | 国产女主播一区| 日韩经典一区二区| 一本到不卡精品视频在线观看| 日韩欧美的一区| 亚洲一区精品在线| 99久久国产免费看| 久久日韩精品一区二区五区| 亚洲不卡av一区二区三区| 成人av影院在线| 国产色产综合色产在线视频| 日韩1区2区日韩1区2区| 欧美亚洲国产一区二区三区| 亚洲欧美综合色| 粗大黑人巨茎大战欧美成人| 精品国产免费久久| 日韩精品免费专区| 欧美在线综合视频| 亚洲日本欧美天堂| 成人动漫一区二区三区| 久久色视频免费观看| 久久99久国产精品黄毛片色诱| 欧美日韩国产美女| 亚洲国产欧美一区二区三区丁香婷| 成人av电影免费在线播放| 久久色.com| 国产一区二区主播在线| 精品成人在线观看| 久久精品国产澳门| 精品理论电影在线观看| 久久99精品一区二区三区三区| 日韩一卡二卡三卡国产欧美| 肉色丝袜一区二区| 欧美一级二级在线观看| 2021国产精品久久精品| 奇米一区二区三区av| 欧美伦理电影网| 日韩精品午夜视频| 欧美日韩美女一区二区| 婷婷综合在线观看| 宅男噜噜噜66一区二区66| 天天av天天翘天天综合网色鬼国产| 欧美日韩中文一区| 五月天亚洲精品| 欧美一级精品大片| 美女脱光内衣内裤视频久久影院| 欧美成人一区二区三区片免费| 麻豆精品在线视频| 国产网红主播福利一区二区| 盗摄精品av一区二区三区| 国产精品女主播av| 在线观看视频一区二区| 日本美女一区二区三区| 亚洲激情第一区| 91成人看片片| 秋霞国产午夜精品免费视频| 日韩欧美国产三级| 国产精品自拍毛片| 国产精品每日更新| 欧亚洲嫩模精品一区三区| 天天综合网天天综合色| 久久影院午夜论| 成人免费av资源| 亚洲一区二区三区不卡国产欧美| 欧美男人的天堂一二区| 久久99精品久久久久久久久久久久| 久久―日本道色综合久久| 99久久精品国产精品久久 | 精东粉嫩av免费一区二区三区| 337p粉嫩大胆噜噜噜噜噜91av| 国产盗摄一区二区| 亚洲狼人国产精品| 日韩欧美www| 99精品1区2区| 日韩黄色在线观看| 国产精品久久久久永久免费观看 | 日本亚洲三级在线| 久久久欧美精品sm网站| 欧美午夜精品久久久久久超碰| 美国一区二区三区在线播放| 国产精品高潮呻吟| 欧美成人一区二区三区片免费| 国产99精品国产| 夜夜揉揉日日人人青青一国产精品| 欧美一区二区三区免费视频| 成人性生交大片免费| 奇米精品一区二区三区四区| 中文字幕av一区 二区| 555www色欧美视频| 成人性生交大片免费看中文| 日韩黄色小视频| 国产精品乱码妇女bbbb| 欧美一区二区日韩一区二区| av成人老司机| 国产激情一区二区三区四区| 午夜成人免费电影| 日韩一区在线看| 久久精品人人做人人爽人人| 3d动漫精品啪啪一区二区竹菊| 9i在线看片成人免费| 久久99精品久久久|