亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? emclust.m

?? 模式識別常用功能函數
?? M
字號:
%EMCLUST Expectation-Maximization clustering%%  [LABELS,W_EM] = EMCLUST (A,W_CLUST,K,LABTYPE,FID)%% INPUT%   A         Dataset, possibly labeled%   W_CLUST   Cluster model mapping, untrained (default: nmc)%   K         Number of clusters (default: 2)%   LABTYPE   Label type: 'crisp' or 'soft' (default: label type of A)%   FID       File ID to write progress to (default [], see PRPROGRESS)%% OUTPUT%   LABELS    Integer labels for the objects in A pointing to their cluster%   W_EM      EM clustering mapping%% DESCRIPTION% The untrained classifier mapping W_CLUST is used to update an initially% labeled dataset A by iterating the following two steps:%   1. Train W   :  W_EM = A*W_CLUST%   2. Relabel A :  A    = dataset(A,labeld(A*W_EM*classc))% This is repeated until the labeling does not change anymore. The final% classification matrix is returned in B. The final crisp labeling is returned% in LABELS. W_EM may be used for assigning new objects.%% If K is given, a random initialisation for K clusters is made and labels% of A are neglected. %% LABTYPE determines the type of labeling: 'crisp' or 'soft'. Default: label% type of A. It is assumed W_CLUST can handle the LABTYPE requested.% Only in case LABTYPE is 'soft' the tradition EM algorithm is followed.% In case LABTYPE is 'crisp' EMCLUST follows a generalised k-means% algorithm.%% SEE ALSO% MAPPINGS, DATASETS, KMEANS, PRPROGRESS% Copyright: R.P.W. Duin, r.p.w.duin@prtools.org% Faculty EWI, Delft University of Technology% P.O. Box 5031, 2600 GA Delft, The Netherlands% $Id: emclust.m,v 1.23 2005/10/29 18:59:41 duin Exp $function [new_lab,w_em] = emclust (a,w_clust,n,type,fid)	prtrace(mfilename);	n_ini		= 500;			% Maximum size of subset to use for initialisation.	epsilon = 1e-6;			% Stop when average labeling change drops below this.	% Check arguments.	if (nargin < 5), fid = []; end	if (nargin < 4)		prwarning(3,'No label type specified, using label type of dataset A.');		type = []; 	end	if (nargin < 3) | isempty(n)		prwarning(3,'No number of clusters specified, using number of classes in A.');		n = []; 	end	if (nargin < 2) | isempty(w_clust)		prwarning(2,'No clustering mapping specified, assuming NMC.');		w_clust = nmc;   	end  isuntrained(w_clust);   % Assert that clustering mapping is untrained.  % Determine number of clusters N and initialisation method.	a = dataset(a); 	islabtype(a,'crisp','soft');	[m,k,c] = getsize(a); 	rand_init = 1;	if (isempty(n))		if (c == 1)						% For one class, find two clusters.			n = 2;		else			n = c;										rand_init = 0; 			% Use given classification as initialisation.		end	end	if (n < 1),  error('Number of clusters should be at least one.'); end	if (n == 1), prwarning(4,'Clustering with 1 cluster is trivial.'); end	% Set label type, if given.	if ~isempty(type), a = setlabtype(a,type); end	a = setprior(a,[]); % make sure that priors will be deleted		% Initialise by performing KCENTRES on...	if (rand_init)		if (m > n_ini)       						% ... a random subset of A.      prwarning(2,'Initializing by performing KCENTRES on a subset of %d samples.', n_ini);			a_ini = +gendat(+a,n_ini);			else      prwarning(2,'Initializing by performing KCENTRES on the training set.');			a_ini = +a;								% ... the entire set A.		end		not_found = 1;		itern = 0;		while(not_found)			% try to find an initialisation with all class sizes > 1			itern = itern + 1;			if itern > 100				error('Not possible to find desired number of components')			end			assign  = kcentres(+distm(a_ini),n);		% Train initial classifier on labels generated by KCENTRES and find		% initial hard labels. Use NMC instead of W_CLUST to make sure that we     % always have enough data to estimate the parameters.			a_ini = dataset(a_ini,assign); 			a_ini = setprior(a_ini,getprior(a_ini,0));			d = a*(a_ini*nmc);  		if (islabtype(a,'soft'))				new_lab = +d;				not_found = 0;			else				new_lab = d*labeld;				if all(classsizes(dataset(d,new_lab)) > 1)					not_found = 0;				end			end		end	else		a = setlablist(a,[1:c]');		new_lab = getlabels(a);		% Use given labeling.	end	% Ready for the work.	prprogress(fid,'\nemclust optimization\n')	iter = 0;  if (islabtype(a,'soft'))  	change = 1;		a = setlabels(a,new_lab);		a = setprior(a,getprior(a,0));		lab = new_lab;  	while (change > epsilon)       	% EM loop, run until labeling is stable.  		w_em = a*w_clust;             % 1. Train classifier, density output.  		b = a*(w_em*classc);          % 2. Assign probability to training samples.  		a = settargets(a,b);          % 3. Insert probabilities as new labels.  		change = mean(mean((+b-lab).^2)); lab = b;          			prprogress(fid,'  change = %f (mse)\n',change);			iter = iter+1;			if iter > 500				prwarning(1,'emclust stopped after 500 iterations')				change = 0;			end  	end	else  % crsip labels  	lab = ones(m,1);		it = 0;  	while (any(lab ~= new_lab) & it < 50)     % EM loop, run until labeling is stable.			it = it + 1;  		a = setlabels(a,new_lab); 		% 0. Set labels and store old labels.			a = setprior(a,getprior(a,0));%    Set priors to class frequencies  		lab = new_lab;								% 			a = remclass(a,1);            %    demand class sizes > 2 objects			itern = 0;			while getsize(a,3) < n        %    increase number of classes if necessary				itern = itern + 1;				if itern > 100					error('Not possible to find desired number of components')				end				laba = getlablist(a);				labmax = max(laba);				N = classsizes(a);				[Nmax,cmax] = max(N);        % find largest class				aa = seldat(a,cmax);         % select just that one				new_lab_aa = kmeans(aa,2);   % split it by kmeans				N1 = sum(new_lab_aa == 1);   				N2 = sum(new_lab_aa == 2);				if (N1 > 1 & N2 > 1) % use it if both classes have more than one sample					J = findlabels(a,laba(cmax,:));					a = setlabels(a,new_lab_aa + labmax,J);				end			end				  		w_em = a*w_clust;             % 1. Compute classifier, crisp output.  		b = a*w_em;               		% 2. Classify training samples.  		new_lab = labeld(b);      		% 3. Insert classification as new labels.			prprogress(fid,'  change = %d objects, no. of classes = %i\n', ...				length(find(lab ~= new_lab)),length(unique(new_lab)));			iter = iter+1;             %DXD Added also the iter for the crisp labels			if iter > 500				prwarning(1,'emclust stopped after 500 iterations')				change = 0;			end  	end  end	prprogress(fid,'emclust finished\n')return;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一区二区三区精品在线观看| 精品一区二区三区视频在线观看| 婷婷激情综合网| 国模冰冰炮一区二区| 欧美色手机在线观看| 国产精品久久久久久久久图文区| 青青草国产成人99久久| 91片在线免费观看| 亚洲精品一区二区三区精华液| 亚洲精品免费看| 成人免费视频播放| 久久一留热品黄| 蜜桃av噜噜一区二区三区小说| 在线观看日产精品| 成人欧美一区二区三区在线播放| 久久国产精品第一页| 欧美日韩国产系列| 依依成人精品视频| 不卡电影一区二区三区| 欧美精品一区二区三区四区 | 亚洲高清视频中文字幕| 成人午夜免费av| 久久久精品天堂| 极品尤物av久久免费看| 欧美在线不卡视频| 亚洲柠檬福利资源导航| 成人的网站免费观看| 久久精品视频在线看| 国产99精品视频| 2019国产精品| 国产福利视频一区二区三区| 欧美α欧美αv大片| 免费观看成人av| 精品91自产拍在线观看一区| 久热成人在线视频| 久久理论电影网| 国产成人亚洲综合a∨猫咪| 久久精品免费在线观看| 国产麻豆精品95视频| 国产亚洲成av人在线观看导航| 久草在线在线精品观看| 久久嫩草精品久久久精品| 国产激情一区二区三区| 国产精品久久久久久久久免费樱桃 | 日本韩国欧美在线| 一区二区三区欧美| 欧美精品在欧美一区二区少妇| 亚洲第一在线综合网站| 91精品国产综合久久久久久久| 青青草国产精品97视觉盛宴| 精品国产乱码91久久久久久网站| 国产成人亚洲精品青草天美| 亚洲乱码一区二区三区在线观看| 欧美视频三区在线播放| 久久精品国产精品青草| 日本一区二区成人| 色婷婷久久一区二区三区麻豆| 亚洲香肠在线观看| 精品成人一区二区三区| 91性感美女视频| 日韩精品成人一区二区在线| 国产亚洲女人久久久久毛片| 91啦中文在线观看| 日本欧美肥老太交大片| 国产精品另类一区| 欧美视频一区二区三区四区| 国产成人在线色| 亚洲综合丝袜美腿| 久久综合丝袜日本网| 在线日韩国产精品| 国产精品一区二区久久不卡| 亚洲一区在线观看视频| 国产午夜精品久久久久久久 | 欧美一区日韩一区| 成人黄色av网站在线| 国产欧美1区2区3区| 欧美日本韩国一区二区三区视频| 国产成人综合视频| 免费人成在线不卡| 亚洲男人都懂的| 久久精品亚洲国产奇米99| 欧美肥妇free| 色综合久久久久久久| 国产一区不卡精品| 人人精品人人爱| 一区av在线播放| 国产精品成人一区二区艾草| 精品国产免费视频| 91麻豆精品国产91久久久资源速度| 成人丝袜18视频在线观看| 精品一二三四在线| 三级欧美在线一区| 亚洲精品国产a| 国产精品视频在线看| 亚洲精品ww久久久久久p站| 久久女同性恋中文字幕| 欧美一区二区三区白人| 欧美日韩高清在线| 欧美日韩中文国产| 91精品1区2区| 日本久久电影网| 99久久er热在这里只有精品15 | 青青草国产成人av片免费| 亚洲精品国产高清久久伦理二区| 国产精品免费久久久久| 国产日韩精品一区二区浪潮av| 日韩欧美精品在线视频| 日韩一区二区视频在线观看| 欧美日韩一区二区欧美激情| 色94色欧美sute亚洲线路一ni| av男人天堂一区| 91在线云播放| 日本大香伊一区二区三区| 91美女在线视频| 欧美中文字幕久久| 在线观看视频一区二区欧美日韩| 在线观看亚洲精品| 欧美性猛交xxxxxx富婆| 91福利小视频| 欧美日韩一二三区| 538在线一区二区精品国产| 91精品欧美一区二区三区综合在 | 日韩vs国产vs欧美| 美女mm1313爽爽久久久蜜臀| 免费高清在线视频一区·| 精品一区二区三区在线观看| 国产伦精品一区二区三区免费迷 | 日本欧美肥老太交大片| 精品一区二区三区免费毛片爱| 另类调教123区| 国产成人在线视频播放| 96av麻豆蜜桃一区二区| 欧美日韩精品电影| 精品国一区二区三区| 国产精品视频你懂的| 亚洲免费在线看| 日韩国产高清在线| 国产精品一区一区| 色综合视频在线观看| 欧美老女人在线| 国产婷婷色一区二区三区在线| 中日韩av电影| 亚洲国产乱码最新视频| 久久99最新地址| 91蝌蚪porny成人天涯| 欧美剧在线免费观看网站| 国产亚洲午夜高清国产拍精品| 亚洲三级小视频| 美女被吸乳得到大胸91| av电影在线观看不卡| 欧美精品777| 久久精品日韩一区二区三区| 亚洲免费av在线| 国产综合成人久久大片91| 色婷婷av一区二区三区之一色屋| 日韩午夜激情av| 亚洲色图都市小说| 久久99国产精品免费| 91麻豆国产精品久久| 精品国产91洋老外米糕| 亚洲黄一区二区三区| 韩国在线一区二区| 欧美体内she精视频| 久久亚洲精精品中文字幕早川悠里 | 日韩**一区毛片| 91美女视频网站| 久久久久久久久久久电影| 亚洲国产综合人成综合网站| 国产精品888| 欧美一区二区三区视频免费| 亚洲免费在线观看| 国产福利视频一区二区三区| 欧美日韩国产小视频在线观看| 国产精品久久看| 国产乱码精品一区二区三| 欧美一区二区三区视频| 亚洲一区二区av在线| 91在线免费视频观看| 久久九九久久九九| 精东粉嫩av免费一区二区三区| 欧美日韩免费一区二区三区视频| 中文字幕在线一区二区三区| 国产一区亚洲一区| 欧美大片一区二区| 喷水一区二区三区| 这里只有精品视频在线观看| 亚洲一区在线看| 欧美性感一区二区三区| 亚洲男帅同性gay1069| 91啪亚洲精品| 亚洲欧美视频一区| 色综合久久99| 亚洲精品国久久99热| 色综合久久88色综合天天6| 亚洲欧美日韩综合aⅴ视频| 成人av在线一区二区| 国产日韩欧美精品一区| 成人免费视频国产在线观看| 国产精品国产精品国产专区不蜜 | 国产美女一区二区三区|