亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? treec.m

?? 模式識別常用功能函數
?? M
?? 第 1 頁 / 共 2 頁
字號:
% constructing decision trees.% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction [g,j,t] = infcrit(a,nlab)	prtrace(mfilename);	[m,k] = size(a);	c = max(nlab);	mininfo = ones(k,2);	% determine feature domains of interest	[sn,ln] = min(a,[],1); 	[sx,lx] = max(a,[],1);	JN = (nlab(:,ones(1,k)) == ones(m,1)*nlab(ln)') * realmax;	JX = -(nlab(:,ones(1,k)) == ones(m,1)*nlab(lx)') * realmax;	S = sort([sn; min(a+JN,[],1); max(a+JX,[],1); sx]);	% S(2,:) to S(3,:) are interesting feature domains	P = sort(a);	Q = (P >= ones(m,1)*S(2,:)) & (P <= ones(m,1)*S(3,:));	% these are the feature values in those domains	for f=1:k,		% repeat for all features		af = a(:,f);		JQ = find(Q(:,f));		SET = P(JQ,f)';		if JQ(1) ~= 1			SET = [P(JQ(1)-1,f), SET];		end		n = length(JQ);		if JQ(n) ~= m			SET = [SET, P(JQ(n)+1,f)];		end		n = length(SET) -1;		T = (SET(1:n) + SET(2:n+1))/2; % all possible thresholds		L = zeros(c,n); R = L;     % left and right node object counts per class		for j = 1:c			J = find(nlab==j); mj = length(J);			if mj == 0				L(j,:) = realmin*ones(1,n); R(j,:) = L(j,:);			else				L(j,:) = sum(repmat(af(J),1,n) <= repmat(T,mj,1)) + realmin;				R(j,:) = sum(repmat(af(J),1,n) > repmat(T,mj,1)) + realmin;			end		end		infomeas =  - (sum(L .* log10(L./(ones(c,1)*sum(L)))) ...			       + sum(R .* log10(R./(ones(c,1)*sum(R))))) ...		    ./ (log10(2)*(sum(L)+sum(R))); % criterion value for all thresholds		[mininfo(f,1),j] = min(infomeas);     % finds the best		mininfo(f,2) = T(j);     % and its threshold	end   	g = 1-mininfo(:,1)';	[finfo,j] = min(mininfo(:,1));		% best over all features	t = mininfo(j,2);			% and its threshold	return%FISHCRIT Fisher's Criterion and its best feature split % % 	[f,j,t] = fishcrit(A,nlabels)% % Computes the value of the Fisher's criterion f for all features % over the dataset A with given numeric labels. Two classes only. j % is the optimum feature, t its threshold. This is a lowlevel % routine called for constructing decision trees.% Copyright R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction [f,j,t] = fishcrit(a,nlab)	prtrace(mfilename);	[m,k] = size(a);	c = max(nlab);	if c > 2		error('Not more than 2 classes allowed for Fisher Criterion')	end	% Get the mean and variances of both the classes:	J1 = find(nlab==1);	J2 = find(nlab==2);	u = (mean(a(J1,:),1) - mean(a(J2,:),1)).^2;	s = std(a(J1,:),0,1).^2 + std(a(J2,:),0,1).^2 + realmin;	% The Fisher ratio becomes:	f = u ./ s;	% Find then the best feature:	[ff,j] = max(f);	% Given the feature, compute the threshold:	m1 = mean(a(J1,j),1);	m2 = mean(a(J2,j),1);	w1 = m1 - m2; w2 = (m1*m1-m2*m2)/2;	if abs(w1) < eps % the means are equal, so the Fisher			 % criterion (should) become 0. Let us set the thresold			 % halfway the domain			 t = (max(a(J1,j),[],1) + min(a(J2,j),[],1)) / 2;	else		t = w2/w1;	end	return%INFSTOP Quinlan's Chi-square test for early stopping% % 	crt = infstop(A,nlabels,j,t)% % Computes the Chi-square test described by Quinlan [1] to be used % in maketree for forward pruning (early stopping) using dataset A % and its numeric labels. j is the feature used for splitting and t % the threshold. %% [1] J.R. Quinlan, Simplifying Decision Trees, % Int. J. Man - Machine Studies, vol. 27, 1987, pp. 221-234.% % See maketree, treec, classt, prune % Guido te Brake, TWI/SSOR, TU Delft.% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction crt = infstop(a,nlab,j,t)	prtrace(mfilename);	[m,k] = size(a);	c = max(nlab);	aj = a(:,j);	ELAB = expandd(nlab); 	L = sum(ELAB(aj <= t,:),1) + 0.001;	R = sum(ELAB(aj > t,:),1) + 0.001;	LL = (L+R) * sum(L) / m;	RR = (L+R) * sum(R) / m;	crt = sum(((L-LL).^2)./LL + ((R-RR).^2)./RR);	return%PRUNEP Pessimistic pruning of a decision tree% % 	tree = prunep(tree,a,nlab,num)% % Must be called by giving a tree and the training set a. num is the % starting node, if omitted pruning starts at the root. Pessimistic % pruning is defined by Quinlan.% % See also maketree, treec, mapt % Guido te Brake, TWI/SSOR, TU Delft.% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction tree = prunep(tree,a,nlab,num)	prtrace(mfilename);	if nargin < 4, num = 1; end;	[N,k] = size(a);	c = size(tree,2)-4;	if tree(num,3) == 0, return, end;	w = mapping('treec','trained',{tree,num},[1:c]',k,c);	ttt=tree_map(dataset(a,nlab),w);	J = testc(ttt)*N;	EA = J + nleaves(tree,num)./2;   % expected number of errors in tree	P = sum(expandd(nlab,c),1);     % distribution of classes					%disp([length(P) c])					[pm,cm] = max(P);     % most frequent class					E = N - pm;     % errors if substituted by leave					SD = sqrt((EA * (N - EA))/N);					if (E + 0.5) < (EA + SD)	     % clean tree while removing nodes						[mt,kt] = size(tree);						nodes = zeros(mt,1); nodes(num) = 1; n = 0;						while sum(nodes) > n;	     % find all nodes to be removed							n = sum(nodes);							J = find(tree(:,3)>0 & nodes==1);							nodes(tree(J,3)) = ones(length(J),1); 							nodes(tree(J,4)) = ones(length(J),1); 						end						tree(num,:) = [cm 0 0 0 P/N];						nodes(num) = 0; nc = cumsum(nodes);						J = find(tree(:,3)>0);% update internal references						tree(J,[3 4]) = tree(J,[3 4]) - reshape(nc(tree(J,[3 4])),length(J),2);						tree = tree(~nodes,:);% remove obsolete nodes					else 						K1 = find(a(:,tree(num,1)) <= tree(num,2));						K2 = find(a(:,tree(num,1)) >  tree(num,2));						tree = prunep(tree,a(K1,:),nlab(K1),tree(num,3));						tree = prunep(tree,a(K2,:),nlab(K2),tree(num,4));					end					return%PRUNET Prune tree by testset% % 	tree = prunet(tree,a)% % The test set a is used to prune a decision tree. % Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction tree = prunet(tree,a)	prtrace(mfilename);	[m,k] = size(a);	[n,s] = size(tree);	c = s-4;	erre = zeros(1,n);	deln = zeros(1,n);	w = mapping('treec','trained',{tree,1},[1:c]',k,c);	[f,lab,nn] = tree_map(a,w);  % bug, this works only if a is dataset, labels ???	[fmax,cmax] = max(tree(:,[5:4+c]),[],2);	nngood = nn([1:n]'+(cmax-1)*n);	errn = sum(nn,2) - nngood;% errors in each node	sd = 1;	while sd > 0		erre = zeros(n,1);		deln = zeros(1,n);		endn = find(tree(:,3) == 0)';	% endnodes		pendl = max(tree(:,3*ones(1,length(endn)))' == endn(ones(n,1),:)');		pendr = max(tree(:,4*ones(1,length(endn)))' == endn(ones(n,1),:)');		pend = find(pendl & pendr);		% parents of two endnodes		erre(pend) = errn(tree(pend,3)) + errn(tree(pend,4));		deln = pend(find(erre(pend) >= errn(pend))); % nodes to be leaved		sd = length(deln);		if sd > 0			tree(tree(deln,3),:) = -1*ones(sd,s);			tree(tree(deln,4),:) = -1*ones(sd,s);			tree(deln,[1,2,3,4]) = [cmax(deln),zeros(sd,3)];		end	end	return%NLEAVES Computes the number of leaves in a decision tree% % 	number = nleaves(tree,num)% % This procedure counts the number of leaves in a (sub)tree of the % tree by using num. If num is omitted, the root is taken (num = 1).% % This is a utility used by maketree. % Guido te Brake, TWI/SSOR, TU Delft% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction number = nleaves(tree,num)	prtrace(mfilename);	if nargin < 2, num = 1; end	if tree(num,3) == 0		number = 1 ;	else		number = nleaves(tree,tree(num,3)) + nleaves(tree,tree(num,4));	end	return

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美国产欧美亚州国产日韩mv天天看完整| 无码av免费一区二区三区试看 | 欧美变态口味重另类| 中文字幕二三区不卡| 日韩成人伦理电影在线观看| jiyouzz国产精品久久| 日韩美女一区二区三区四区| 亚洲一区二区三区四区不卡| 成+人+亚洲+综合天堂| 日韩欧美激情四射| 日韩黄色一级片| 欧美午夜宅男影院| 日本一区二区三区在线观看| 久久成人免费网| 91精品婷婷国产综合久久性色| 日韩理论片在线| 国产91精品一区二区| 精品免费国产二区三区| 午夜欧美视频在线观看| 色综合久久天天综合网| 中文字幕一区不卡| 成人一区二区三区| 久久日韩粉嫩一区二区三区| 久久精品国产一区二区| 91精品国产高清一区二区三区| 一级特黄大欧美久久久| 99re在线精品| 亚洲视频在线一区| 色婷婷国产精品| 亚洲人吸女人奶水| 在线日韩av片| 亚洲超碰97人人做人人爱| 精品视频在线免费观看| 国产精品久久久久桃色tv| 精东粉嫩av免费一区二区三区| 日韩一区二区电影网| 免费精品视频最新在线| 精品国产乱码久久久久久久| 国产成人在线色| 国产精品久久久久影院老司| 91年精品国产| 亚洲一区av在线| 欧美疯狂性受xxxxx喷水图片| 丝瓜av网站精品一区二区| 日韩一级视频免费观看在线| 另类专区欧美蜜桃臀第一页| 国产亚洲欧美在线| 91农村精品一区二区在线| 亚洲自拍偷拍网站| 欧美在线影院一区二区| 日韩影视精彩在线| 久久久久久久网| av午夜精品一区二区三区| 亚洲婷婷在线视频| 欧美一区二区在线播放| 国产一区二区h| 国产精品国模大尺度视频| 色成年激情久久综合| 日韩中文欧美在线| 久久九九国产精品| 欧美在线观看一区二区| 麻豆精品精品国产自在97香蕉 | 欧美日韩一区不卡| 乱一区二区av| 亚洲美女一区二区三区| 日韩一卡二卡三卡| 本田岬高潮一区二区三区| 视频一区免费在线观看| 久久久精品tv| 5566中文字幕一区二区电影| 丁香婷婷综合激情五月色| 午夜精品爽啪视频| 欧美激情资源网| 欧美丰满高潮xxxx喷水动漫| www.av亚洲| 麻豆精品一区二区| 亚洲午夜久久久| 久久精品亚洲精品国产欧美| 欧美羞羞免费网站| 国产suv精品一区二区883| 五月婷婷激情综合网| 国产精品毛片高清在线完整版 | 99国产精品久久久久久久久久久| 天天色综合成人网| 中文字幕中文字幕在线一区| 欧美猛男男办公室激情| 99麻豆久久久国产精品免费| 蜜桃精品视频在线| 亚洲国产成人91porn| 中文字幕亚洲综合久久菠萝蜜| 久久综合狠狠综合久久激情| 欧美一区二区精品| 欧美在线啊v一区| 色婷婷久久久亚洲一区二区三区| 国产精品69毛片高清亚洲| 轻轻草成人在线| 亚洲国产成人av好男人在线观看| 中文字幕在线不卡一区| 久久久99精品免费观看不卡| 日韩免费看网站| 欧美一卡在线观看| 7777精品伊人久久久大香线蕉| 91激情在线视频| 色综合久久中文字幕综合网| 97se亚洲国产综合在线| av不卡一区二区三区| av亚洲精华国产精华精华 | 国产精品久久久久aaaa| 国产日韩精品一区二区浪潮av| 欧美大胆一级视频| 日韩视频一区二区三区| 日韩亚洲欧美一区| 日韩一级片在线观看| 欧美一区二区大片| 日韩免费视频一区| 亚洲精品一区二区三区影院| 精品国产一区二区精华| 日韩欧美国产综合在线一区二区三区| 欧美一区二区三区免费观看视频| 日韩午夜在线播放| 欧美成人一区二区| 久久久久久久国产精品影院| 国产日本欧美一区二区| 国产精品青草综合久久久久99| 国产精品色婷婷久久58| 亚洲欧美日韩国产手机在线 | **性色生活片久久毛片| 亚洲乱码国产乱码精品精98午夜| 亚洲手机成人高清视频| 亚洲一区国产视频| 青草av.久久免费一区| 国产一区美女在线| a在线欧美一区| 欧美日韩久久久久久| 日韩欧美不卡在线观看视频| 日本一区二区三级电影在线观看| 国产精品高潮呻吟| 亚洲一区二区三区美女| 奇米在线7777在线精品 | 国产精品理论片在线观看| 一区二区三区日韩在线观看| 日韩激情在线观看| 国产福利一区二区| 欧美亚洲动漫制服丝袜| 精品国产乱码久久久久久免费| 中文av字幕一区| 手机精品视频在线观看| 成人听书哪个软件好| 欧美日韩一区中文字幕| 久久综合色综合88| 亚洲精品水蜜桃| 久久99精品久久久久婷婷| 99精品久久99久久久久| 日韩欧美激情在线| 一区二区欧美国产| 国产中文一区二区三区| 91久久免费观看| 久久久精品2019中文字幕之3| 亚洲午夜精品网| 成人激情视频网站| 欧美成人一区二区三区| 亚洲中国最大av网站| 国产高清精品在线| 555夜色666亚洲国产免| 亚洲色图清纯唯美| 国模娜娜一区二区三区| 欧美日韩视频在线一区二区| 中文字幕中文字幕一区二区| 国产综合久久久久久久久久久久| 欧美在线观看一二区| 国产精品久久久久久久久免费丝袜| 男人操女人的视频在线观看欧美| 色吧成人激情小说| 中文字幕在线一区| 国产精品一级在线| 日韩一区二区在线观看| 亚洲亚洲人成综合网络| 91亚洲精华国产精华精华液| 亚洲国产岛国毛片在线| 国内精品第一页| 欧美v国产在线一区二区三区| 丝袜美腿一区二区三区| 欧美吻胸吃奶大尺度电影| 国产精品久久久久永久免费观看| 韩国成人福利片在线播放| 日韩精品影音先锋| 免费视频一区二区| 91精品国产全国免费观看 | 国产成人精品影视| 欧美成人艳星乳罩| 麻豆成人av在线| 精品欧美黑人一区二区三区| 日韩国产一二三区| 欧美一区二区免费视频| 日本中文一区二区三区| 日韩无一区二区| 国内精品写真在线观看| 国产网站一区二区三区| 国产精品77777| 国产精品久久777777|