亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tunelssvm.m

?? simple GASVM for LS-SVM
?? M
字號:
function [model,cost,O3] = tunelssvm(model,startvalues, varargin);% Tune the hyperparameters of the model with respect to the given performance measure%% 1. Using the functional interface:%%% >> [gam, sig2, cost] = tunelssvm({X,Y,type,igam,isig2,kernel,preprocess})% >> [gam, sig2, cost] = tunelssvm({X,Y,type,igam,isig2,kernel,preprocess}, StartingValues)% >> [gam, sig2, cost] = tunelssvm({X,Y,type,igam,isig2,kernel,preprocess},...%                                          StartingValues, optfun, optargs)% >> [gam, sig2, cost] = tunelssvm({X,Y,type,igam,isig2,kernel,preprocess},...%                                          StartingValues, optfun, optargs, costfun, costargs)%%      Outputs    %        gam     : Optimal regularization parameter%        sig2    : Optimal kernel parameter(s)%        cost(*) : Estimated cost of the optimal hyperparameters%      Inputs    %        X       : N x d matrix with the inputs of the training data%        Y       : N x 1 vector with the outputs of the training data%        type    : 'function estimation' ('f') or 'classifier' ('c')%        igam    : Starting value of the regularization parameter%        isig2   : Starting value of the kernel parameter(s) (bandwidth in the case of the 'RBF_kernel')%        kernel(*) : Kernel type (by default 'RBF_kernel')%        preprocess(*) : 'preprocess'(*) or 'original'%        StartingValues(*) : Starting values of the optimization routine (or '[]')%        optfun(*) : Optimization function (by default 'gridsearch')%        optargs(*) : Cell with extra optimization function arguments%        costfun(*) : Function estimating the cost-criterion (by default 'crossvalidate')%        costargs(*) : Cell with extra cost function arguments%% 2. Using the object oriented interface:%% >> [model, cost] = tunelssvm(model)% >> [model, cost] = tunelssvm(model, StartingValues)% >> [model, cost] = tunelssvm(model, StartingValues, optfun, optargs)% >> [model, cost] = tunelssvm(model, StartingValues, optfun, optargs, costfun, costargs)%%      Outputs    %        model            : Object oriented representation of the LS-SVM model with optimal hyperparameters%        cost(*)          : Estimated cost of the optimal hyperparameters%      Inputs    %        model            : Object oriented representation of the LS-SVM model with initial hyperparameters%        StartingValues(*): Starting values of the optimization routine (or '[]')%        optfun(*)        : Optimization function (by default 'gridsearch')%        optfun(*)        : Cell with extra optimization function arguments%        costfun(*)       : Function estimating the cost-criterion (by default 'crossvalidate')%        optfun(*)        : Cell with extra cost function arguments%%  See also:%    trainlssvm, crossvalidate, validate, gridsearch, linesearch  % Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab    %% starting values%try,  if ~isnumeric(startvalues),    warning('Startingvalues has to be in a matrix');  endcatchend  %% initiate variables%if iscell(model),  model = initlssvm(model{:});  func=1;else  func=0;endmodel = trainlssvm(model);%% defaults%if length(varargin)>=1, optfun  = varargin{1}; else optfun='gridsearch';endif length(varargin)>=2, optargs = varargin{2}; else optargs = {}; endif length(varargin)>=3,   costfun = varargin{3};   if length(varargin)>=4, costargs = varargin{4};   else     costargs ={};     if strcmp(costfun,'crossvalidate') | strcmp(costfun,'rcrossvalidate') |strcmp(costfun,'leaveoneout'),      eval('[X,Y]=postlssvm(model,model.xtrain, codelssvm(model,model.ytrain));costargs = {X,Y};',...           '[X,Y]=postlssvm(model,model.xtrain, model.ytrain);costargs = {X,Y};')    end  endelse   costfun= 'crossvalidate';   eval('[X,Y]=postlssvm(model,model.xtrain, codelssvm(model,model.ytrain));costargs = {X,Y};',...       '[X,Y]=postlssvm(model,model.xtrain, model.ytrain);costargs = {X,Y};')end%% multiple outputsif (model.y_dim>1)% & (size(model.kernel_pars,1)==model.y_dim |size(model.gam,1)==model.y_dim |prod(size(model.kernel_type,1))==model.y_dim))  disp(' -->> tune individual outputs');  for d=1:model.y_dim,    fprintf(['\n -> dim ' num2str(d) ': \n']);    eval('gam = model.gam(:,d);','gam = model.gam;');    eval('sig2 = model.kernel_pars(:,d);','sig2 = model.kernel_pars;');    eval('kernel = model.kernel_typeeckscic;','kernel=model.kernel_type;');    [g,s,c] = ...        tunelssvm({model.xtrain,model.ytrain(:,d),...                   model.type,gam,sig2,kernel,'original'},...                  [],varargin{:});    gamt(:,d) = g;    eval('kernel_part(:,d) = s;','kernel_part = []; ');    costs(d) = c;  end  model.gam = gamt;  model.kernel_pars = kernel_part;  if func,    O3 = costs;    cost = model.kernel_pars;    model = model.gam;  end  return  endif length(model.gam)>1,   error('Only one gamma per output allowed'); end%% depending on kernel%%% lineare kernel%if strcmp(model.kernel_type,'lin_kernel'),  optfun = 'linesearch';  disp(' TUNELSSVM: chosen specifications:');  disp([' 1. optimization routine:           ' optfun]);  disp(['    cost function:                  ' costfun]);  disp(' ');  eval('startvalues = log(startvalues);','startvalues = [];');  if isempty(startvalues),    startvalues = log(model.gam)+[-5;10];  end    tic;  c = costofmodel1(startvalues(1),model,costfun,costargs);  et = toc;   disp([' 2. starting values:                   ' num2str(exp(startvalues(1,:)))]);  disp(['    cost of starting values:           ' num2str(c)]);  disp(['    time needed for 1 evaluation (sec):' num2str(et)]);  disp(['    limits of the grid:   [gam]         ' num2str(exp(startvalues(:,1))')]);  disp(' ');  disp('OPTIMIZATION IN LOG SCALE...');    %  % major call  [gs, cost,evals, fig] = feval(optfun, @costofmodel1,startvalues,{model, costfun,costargs},optargs{:});  figure(fig);  xlabel('log(gamma)');  ylabel(costfun);    gamma = exp(gs(1));  kernel_pars = [];  disp(['Obtained hyper-parameters: [gamma]: ' num2str([gamma])]);%% RBF kernel%elseif strcmp(model.kernel_type,'RBF_kernel'),      disp(' TUNELSSVM: chosen specifications:');  disp([' 1. optimization routine:           ' optfun]);  disp(['    cost function:                  ' costfun]);  disp(' ');    eval('startvalues = log(startvalues);','startvalues = [];');  if isempty(startvalues),    startvalues = [log(model.gam)+[-3;5] log(model.kernel_pars)+[-2.5;2.5]];  end    tic;  c = costofmodel2(startvalues(1,:),model,costfun,costargs);  et = toc;   disp([' 2. starting values:                   ' num2str(exp(startvalues(1,:)))]);  disp(['    cost of starting values:           ' num2str(c)]);  disp(['    time needed for 1 evaluation (sec):' num2str(et)]);  disp(['    limits of the grid:   [gam]         ' num2str(exp(startvalues(:,1))')]);  disp(['                          [sig2]        ' num2str(exp(startvalues(:,2))')]);  disp(' ');  disp('OPTIMIZATION IN LOG SCALE...');  [gs, cost, evals, fig] = feval(optfun,@costofmodel2,startvalues,{model, costfun,costargs},optargs{:});    figure(fig);  xlabel('log(\gamma)');  ylabel('log(\sigma^2)');  zlabel(costfun);  gamma = exp(gs(1));  kernel_pars = exp(gs(2:end))';        disp(['Obtained hyper-parameters: [gamma sig2]: ' num2str([gamma kernel_pars])]);    %% polynoom kernel%elseif strcmp(model.kernel_type,'poly_kernel'),  dg = model.kernel_pars(2);  disp(' TUNELSSVM: chosen specifications:');  disp([' 1. optimization routine:           ' optfun]);  disp(['    cost function:                  ' costfun]);  disp(' ');    eval('startvalues = log(startvalues);','startvalues = [];');  if isempty(startvalues),    startvalues = [log(model.gam)+[-3;5] log(model.kernel_pars(1))+[-2.5;2.5]];  end    tic;  c = costofmodel3(startvalues(1,:),dg,model,costfun,costargs);  et = toc;   disp([' 2. starting values:                   ' num2str([exp(startvalues(1,:)) dg])]);  disp(['    cost of starting values:           ' num2str(c)]);  disp(['    time needed for 1 evaluation (sec):' num2str(et)]);  disp(['    limits of the grid:   [gam]         ' num2str(exp(startvalues(:,1))')]);  disp(['                          [t]           ' num2str(exp(startvalues(:,2))')]);  disp(['                          [degree]      ' num2str(dg)]);  disp('OPTIMIZATION IN LOG SCALE...');  [gs, cost, evals, fig] = feval(optfun,@costofmodel3,startvalues,{dg,model, costfun,costargs},optargs{:});  figure(fig);  xlabel('log(\gamma)');  ylabel('log(t)');  zlabel(costfun);    gamma = exp(gs(1));  kernel_pars = [exp(gs(2:end));dg];    disp(['Obtained hyper-parameters: [gamma t degree]: ' num2str([gamma kernel_pars'])]);else  warning('Tuning for other kernels is not actively supported,  see ''gridsearch'' and ''linesearch''.')endmodel.cga_startvalues = [];if func,  O3 = cost;  eval('cost = [kernel_pars;degree];','cost = kernel_pars;');  model = gamma;else  model = changelssvm(changelssvm(model,'gam',exp(gs(1))),'kernel_pars',exp(gs(2:end)));endfunction cost =  costofmodel1(gs, model,costfun,costargs)  gam = exp(min(max(gs(1),-50),50));  modelf = changelssvm(model,'gam',gam);  cost = feval(costfun,modelf,costargs{:});  function cost =  costofmodel2(gs, model,costfun,costargs)  gam = exp(min(max(gs(1),-50),50));  sig2 = zeros(length(gs)-1,1);  for i=1:length(gs)-1, sig2(i,1) = exp(min(max(gs(1+i),-50),50)); end  modelf = changelssvm(changelssvm(model,'gam',gam),'kernel_pars',sig2);  cost = feval(costfun,modelf,costargs{:});  function cost =  costofmodel3(gs,d, model,costfun,costargs)  gam = exp(min(max(gs(1),-50),50));  sig2 = exp(min(max(gs(2),-50),50));  modelf = changelssvm(changelssvm(model,'gam',gam),'kernel_pars',[sig2;d]);  cost = feval(costfun,modelf,costargs{:});

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久网站最新地址| 欧美浪妇xxxx高跟鞋交| 久久久久免费观看| 激情深爱一区二区| 欧美电影免费观看高清完整版在线观看| 天堂影院一区二区| 日韩一区二区三区精品视频| 日韩国产欧美在线观看| 日韩精品一区二区三区老鸭窝| 老司机午夜精品| 国产亲近乱来精品视频| 91在线精品秘密一区二区| 一区二区三区四区亚洲| 欧美精品一卡二卡| 国内精品免费在线观看| 国产精品成人一区二区艾草| 色综合久久久网| 日韩专区欧美专区| 久久综合久色欧美综合狠狠| 不卡视频在线看| 午夜精品影院在线观看| 久久久不卡网国产精品一区| 色婷婷综合五月| 日本欧美在线观看| 日本一区二区三区在线不卡 | 欧美一区二区视频在线观看2020| 美国一区二区三区在线播放| 欧美国产日韩亚洲一区| 欧美日韩日日夜夜| 国产高清不卡二三区| 亚洲午夜久久久久| 久久久久9999亚洲精品| 欧美日免费三级在线| 经典三级一区二区| 中文字幕五月欧美| 在线电影一区二区三区| 成人理论电影网| 日韩av成人高清| 亚洲欧美国产高清| 久久综合999| 9191精品国产综合久久久久久| 国产精品亚洲视频| 亚洲二区在线视频| 国产欧美日韩三区| 91精品麻豆日日躁夜夜躁| 欧美福利一区二区| 成人精品电影在线观看| 蜜桃在线一区二区三区| 亚洲精品福利视频网站| 国产三级精品三级| 欧美一区二区三区日韩| 色综合久久久久久久久| 国产精品亚洲第一| 久久精品国内一区二区三区| 亚洲精品欧美在线| 最好看的中文字幕久久| 久久夜色精品国产欧美乱极品| 欧美色窝79yyyycom| 99在线视频精品| 国产福利精品导航| 韩国女主播成人在线| 日韩一区欧美二区| 亚洲.国产.中文慕字在线| 亚洲视频图片小说| 国产免费成人在线视频| 国产日韩欧美综合在线| 精品久久久久99| 精品日韩一区二区| 91精品国产综合久久婷婷香蕉 | 亚洲综合免费观看高清在线观看| 欧美激情在线一区二区三区| 久久综合久色欧美综合狠狠| 日韩欧美的一区二区| 91精品国产aⅴ一区二区| 欧美日韩国产小视频在线观看| 欧美性生活一区| 欧美系列日韩一区| 欧美日韩一区二区三区视频| 在线视频一区二区三区| 欧美网站一区二区| 欧美日韩五月天| 欧美男生操女生| 欧美一区二区三区播放老司机| 6080yy午夜一二三区久久| 欧美喷潮久久久xxxxx| 欧美精品久久99久久在免费线| 91精品久久久久久蜜臀| 欧美成人vps| 国产亚洲精久久久久久| 国产精品欧美久久久久一区二区| 国产精品久久久久aaaa樱花| 亚洲码国产岛国毛片在线| 一区av在线播放| 丝袜脚交一区二区| 精品一区在线看| 99久久99精品久久久久久| 91黄色在线观看| 在线91免费看| 久久网这里都是精品| 中文字幕在线一区二区三区| 亚洲最大的成人av| 婷婷一区二区三区| 国产精品一区二区免费不卡| 不卡一二三区首页| 欧美日韩精品欧美日韩精品| 精品噜噜噜噜久久久久久久久试看| 欧美精品一区二| 亚洲欧美激情插| 美国十次综合导航| 99久久精品一区| 91精品婷婷国产综合久久竹菊| 久久久蜜桃精品| 一区二区三区精品在线观看| 久久精品国产久精国产| 成人精品视频.| 欧美日本在线一区| 中文字幕免费不卡| 五月婷婷激情综合| 国产成a人无v码亚洲福利| 色婷婷av久久久久久久| 欧美大片免费久久精品三p| 亚洲欧美日韩综合aⅴ视频| 免费观看成人av| 色综合视频在线观看| 精品国产1区二区| 亚洲色图色小说| 免费在线观看成人| 色综合久久中文综合久久97| wwwwww.欧美系列| 一级特黄大欧美久久久| 国产高清在线精品| 欧美日韩1234| 一区二区三区毛片| 不卡的av电影| 精品国产网站在线观看| 亚洲va韩国va欧美va精品| 成人sese在线| 精品国产免费视频| 亚洲h动漫在线| 91首页免费视频| 欧美激情一区二区三区四区| 天天免费综合色| 在线视频国内自拍亚洲视频| 久久精品亚洲乱码伦伦中文| 日精品一区二区| 欧美亚洲愉拍一区二区| 亚洲欧洲av在线| 国产91丝袜在线观看| 日韩女优av电影| 日韩国产在线观看一区| 欧美日韩成人在线| 亚洲国产精品久久人人爱蜜臀 | 色综合欧美在线视频区| 国产免费久久精品| 国产精品亚洲综合一区在线观看| 日韩免费电影一区| 亚洲二区视频在线| 欧美在线一二三四区| 一区二区三区日本| 91在线免费看| 亚洲美女视频在线| 91免费国产在线| 亚洲人成网站色在线观看| 成人高清在线视频| 国产亚洲精品精华液| 岛国一区二区在线观看| 久久久久久久久久久久久夜| 国产乱国产乱300精品| 国产亚洲污的网站| 成人h动漫精品| 亚洲视频小说图片| 欧洲激情一区二区| 亚洲成人黄色小说| 欧美精品tushy高清| 日韩av一级片| 精品国产欧美一区二区| 国产精品一区免费视频| 日本一区二区成人| 99视频在线观看一区三区| 亚洲图片你懂的| 欧美在线不卡视频| 视频一区视频二区中文| 日韩三级视频在线观看| 国产成人精品亚洲日本在线桃色| 日本一区免费视频| 91色.com| 日日夜夜精品视频免费| 日韩免费高清视频| 成人免费视频网站在线观看| 亚洲欧洲三级电影| 在线观看亚洲精品| 日本欧美一区二区在线观看| 久久久午夜精品理论片中文字幕| 国产成人免费在线观看不卡| 亚洲日本护士毛茸茸| 这里只有精品视频在线观看| 韩国成人精品a∨在线观看| 国产精品色呦呦| 欧美另类久久久品| 国产精品一区一区三区|