亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? crossvalidate.m

?? simple GASVM for LS-SVM
?? M
字號:
function [cost,costs,output] = crossvalidate(model, X,Y, L, estfct,combinefct, corrected,trainfct,simfct)% Estimate the model performance of a model with [$ l$] -fold crossvalidation%% >> cost = crossvalidate({Xtrain,Ytrain,type,gam,sig2}, Xval, Yval)% >> cost = crossvalidate( model, Xval, Yval)% % The data is once permutated randomly, then it is divided into L% (by default 10) disjunct sets. In the i-th (i=1,...,l) iteration,% the i-th set is used to estimate the performance ('validation% set') of the model trained on the other l-1 sets ('training% set'). At last, the l (denoted by L) different estimates of the% performance are combined (by default by the 'mean'). The% assumption is made that the input data are distributed% independent and identically over the input space. As additional% output, the costs in the different folds ('costs') and all% residuals ('ec') of the data are returned:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval)% % By default, this function will call the training (trainlssvm) and% simulation (simlssvm) algorithms for LS-SVMs. However, one can% use the validation function more generically by specifying the% appropriate training and simulation function. Some commonly used criteria are:% % >> cost = crossvalidate(model, Xval, Yval, 10, 'misclass', 'mean', 'corrected')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mse', 'mean', 'original')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mae', 'median', 'corrected')% % Full syntax% %     1. Using LS-SVMlab with the functional interface:% % >> [cost, costs, ec] = crossvalidate({X,Y,type,gam,sig2,kernel,preprocess},Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         X             : Training input data used for defining the LS-SVM and the preprocessing%         Y             : Training output data used for defining the LS-SVM and the preprocessing%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         Xval          : N x d matrix with the inputs of the data used for cross-validation%         Yval          : N x m matrix with the outputs of the data used for cross-validation%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     2. Using the object oriented interface:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the LS-SVM model%         Xval          : Nt x d matrix with the inputs of the validation points used in the procedure%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     3. Using other modeling techniques::% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction, trainfct, simfct)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : l x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the model%         Xval          : Nt x d matrix with the inputs of the validation points used%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'%         trainfct      : Function used to train the model%         simfct        : Function used to simulate test data with the model% % See also:% validate, leaveoneout, leaveoneout_lssvm, trainlssvm, simlssvm% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% initialisation and defaults%if size(X,1)~=size(Y,1), error('X and Y have different number of datapoints'); end[nb_data,y_dim] = size(Y);% LS-SVMlabeval('model = initlssvm(model{:});',' ');eval('L;','L=min(ceil(model.nb_data/4),10);');eval('estfct;','estfct=''mse'';');eval('combinefct;','combinefct=''mean'';');eval('trainfct;','trainfct=''trainlssvm'';');eval('simfct;','simfct=''simlssvm'';');eval('corrected;','corrected=''original'';');%% make a random permutation of the data%px = zeros(size(X));py = zeros(size(Y));if L==nb_data, p = 1:nb_data; else p = randperm(nb_data); endfor i=1:nb_data,  px(i,:) = X(p(i),:);  py(i,:) = Y(p(i),:);end;block_size = floor(nb_data/L);%%initialize: no incremental  memory allocation%err = zeros(L,1);corr2 = zeros(L,1);costs = zeros(L,1);output = zeros(size(Y));%%% start loop over l validations%for l = 1:L,    % divide in data and validation set, trainings data set is a copy  % of permutated_data, validation set is just a logical index   if l==L,    train = [1:block_size*(l-1)];    validation = block_size*(l-1)+1:nb_data;  else    train = [1:block_size*(l-1) block_size*l+1:nb_data];    validation = block_size*(l-1)+1:block_size*l;  end    % lets invert this...eXtreme cv  %validation = [1:block_size*(l-1) block_size*l+1:nb_data];  %train = block_size*(l-1)+1:block_size*l;  %disp([num2str(l) ': |trainset|' num2str(length(train)) ' & |test| ' num2str(length(validation))]);      %costs(l) = validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);  [costs(l), modell,output(p(validation),:)] = ...      validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);    %  % calculate correction term 2: MSE(f_data, error_wholedata)  % try to reuse the previously calculated model  %  if corrected(1) =='c',    eval('errors = feval(simfct, modell, px) - py;corr2(l) = feval(estfct, errors);',...	 'corr2(l) = validate(model, px(train,:), py(train,:), px, py,estfct, trainfct, simfct);');  endend % end loop over l validations%%% misclassifications%sc = find(costs~=inf & costs~=NaN);ff=zeros(size(costs)); ff(sc)=costs(sc);costs=ff;sc = find(corr2~=inf & corr2~=NaN);ff=zeros(size(corr2)); ff(sc)=corr2(sc);corr2=ff;%% calculate the final costs%if corrected(1)=='c',  % calculate correction term 1: MSE(f_wholedata, error_wholedata)  corr1 = validate(model,X, Y,  X, Y,  estfct, trainfct, simfct);  if corr1==inf | corr2==NaN, corr1=0; end  cost = feval(combinefct, costs)+corr1-feval(combinefct,corr2);else  cost = feval(combinefct, costs);end;	  fprintf('\n');	%file = [num2str(cost) '_costsLSSVM_{' num2str(model.gam(1)) ',' num2str(model.kernel_pars(1)) '}.mat'];%save L1costs costs;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩电影一区二区三区| 国产呦萝稀缺另类资源| 久久综合色天天久久综合图片| 91丨九色丨国产丨porny| 免费一级片91| 三级成人在线视频| 亚洲精品大片www| 中文字幕一区二区日韩精品绯色| 日韩精品一区二区三区在线播放| 欧美视频中文字幕| 欧美三日本三级三级在线播放| 丁香激情综合五月| 不卡视频一二三| 99久久99久久精品免费观看| 国产成人免费视频一区| 国产精品99久久久久久似苏梦涵 | 国产精品拍天天在线| 26uuu精品一区二区三区四区在线 26uuu精品一区二区在线观看 | 麻豆高清免费国产一区| 青青草一区二区三区| 免费成人结看片| 韩国女主播成人在线观看| 国产福利91精品一区二区三区| 国产高清无密码一区二区三区| 国产91精品一区二区| 99re视频这里只有精品| 欧美激情一区二区三区| 亚洲柠檬福利资源导航| 日韩专区一卡二卡| 国产精品1区2区3区在线观看| 国产99久久久国产精品| av成人老司机| 91精品国产综合久久久久| 日韩亚洲欧美成人一区| 国产丝袜欧美中文另类| 一区二区三区在线视频观看58| 一区二区三区精品在线观看| 天天做天天摸天天爽国产一区 | 亚洲综合丝袜美腿| 久久99国产精品麻豆| 成人av电影免费观看| 日韩午夜三级在线| 亚洲欧美日韩人成在线播放| 美国三级日本三级久久99| 不卡欧美aaaaa| 精品国产乱码久久久久久久| 亚洲欧美国产毛片在线| 国产麻豆精品视频| 欧美一区二区视频在线观看2020| 中文字幕一区二区三区在线播放| 免费视频一区二区| 欧美午夜影院一区| 亚洲视频资源在线| 不卡的av网站| 国产欧美精品区一区二区三区| 日韩在线a电影| 欧美色男人天堂| 亚洲国产乱码最新视频 | 久久久久久97三级| 精彩视频一区二区三区| 欧美一卡二卡三卡| 日韩电影免费在线| 欧美三级在线播放| 亚洲在线视频网站| 欧美日韩国产不卡| 亚洲成人在线免费| 欧美日本在线一区| 午夜精品久久久久久久久久| 在线看一区二区| 午夜一区二区三区在线观看| 欧美狂野另类xxxxoooo| 日韩国产成人精品| 欧美成人精品二区三区99精品| 精品一区中文字幕| 中文字幕日韩一区| 欧美丝袜丝交足nylons图片| 亚洲va韩国va欧美va精品 | 国产日产精品一区| 欧美精品一区二区在线播放 | 国产欧美一区二区三区沐欲| 99久久婷婷国产| 亚洲电影一级片| 国产亚洲欧美一级| 91视频.com| 极品少妇xxxx精品少妇偷拍| 日本一区二区三区免费乱视频 | 99re在线视频这里只有精品| 午夜视频一区在线观看| 欧美精品一区二区不卡 | 在线视频你懂得一区二区三区| 亚洲超丰满肉感bbw| 久久精品亚洲乱码伦伦中文| 色婷婷香蕉在线一区二区| 六月丁香婷婷色狠狠久久| 亚洲最大成人网4388xx| 精品国精品国产尤物美女| 一本大道久久a久久精二百| 日韩成人免费在线| 亚洲美腿欧美偷拍| 国产三级精品视频| 日韩片之四级片| 97精品国产露脸对白| 经典一区二区三区| 视频一区二区三区在线| 亚洲精品国久久99热| 国产精品午夜在线| 久久久久久久精| 久久这里都是精品| 精品久久一区二区三区| 日韩一区二区三区电影| 欧美视频三区在线播放| 99精品视频一区二区三区| 国产xxx精品视频大全| 久久99久久久欧美国产| 久久精品国产久精国产| 美女爽到高潮91| 国内一区二区视频| 国产乱子伦视频一区二区三区 | 欧美成人精品二区三区99精品| 91精品国产高清一区二区三区蜜臀 | 制服丝袜激情欧洲亚洲| 欧美色电影在线| 91精品国产色综合久久| 日韩欧美一二三| 国产亚洲制服色| 亚洲女人的天堂| 青青草97国产精品免费观看无弹窗版 | 精品成人佐山爱一区二区| 精品久久久久久亚洲综合网| 日韩美女视频在线| 国产婷婷色一区二区三区四区| 国产精品久久久久久亚洲毛片 | 亚洲综合在线免费观看| 亚洲图片欧美色图| 激情综合网av| 一本大道久久a久久精品综合| 在线观看av一区二区| 日韩一级片在线观看| 亚洲欧美一区二区三区极速播放| 亚洲一区二区欧美激情| 国产高清精品在线| 一道本成人在线| 久久精品网站免费观看| 自拍视频在线观看一区二区| 热久久免费视频| 欧美怡红院视频| 日韩欧美高清dvd碟片| 专区另类欧美日韩| 精品在线一区二区三区| 欧美三级乱人伦电影| 国产女人18水真多18精品一级做| 日韩成人精品在线观看| 91首页免费视频| 欧美激情综合网| 国产在线视频一区二区三区| 91福利视频久久久久| 国产精品免费视频观看| 久久国产精品第一页| 欧美韩国日本不卡| 国产一区二区在线视频| 欧美精品电影在线播放| 亚洲精品国产无套在线观| 成人听书哪个软件好| 国产三区在线成人av| 久久99精品一区二区三区| 欧美午夜精品一区二区三区| 中文字幕精品综合| 91免费观看国产| 亚洲午夜在线视频| 欧美在线观看你懂的| 中文字幕一区二区日韩精品绯色| 成人小视频免费在线观看| 国产精品入口麻豆九色| 国产成人免费xxxxxxxx| 久久久久久麻豆| www.视频一区| 亚洲欧美色一区| 蜜臀久久99精品久久久画质超高清 | 日韩欧美资源站| 天天av天天翘天天综合网色鬼国产| 91亚洲男人天堂| 亚洲男同性恋视频| 国产一区二区三区香蕉 | 亚洲午夜激情av| 欧美另类久久久品| 久久激情综合网| 日韩美女在线视频| 国产最新精品精品你懂的| wwww国产精品欧美| 成人av电影在线网| 亚洲色图欧洲色图婷婷| 欧美性猛交xxxxxxxx| 亚洲乱码国产乱码精品精的特点 | 国产精品综合av一区二区国产馆| 337p粉嫩大胆噜噜噜噜噜91av | 亚洲麻豆国产自偷在线| 色猫猫国产区一区二在线视频| 一区二区三区四区不卡视频 | 国产成人午夜电影网| 国产亚洲欧洲一区高清在线观看|