?? sa_fig7_10.m
字號(hào):
% Min-Norm AOA estimation for a M = 6 element array with noise variance = .1
figure;
M=6;
D = 2; % number of signals
sig2=.1;
th1=-5*pi/180;
th2=5*pi/180;
a1=[1];
a2=[1];
temp=eye(M);
u1=temp(:,1);
for i=2:M
a1=[a1 exp(-1j*i*pi*sin(th1))];
a2=[a2 exp(-1j*i*pi*sin(th2))];
end
A=[a1.' a2.'];
Rss=[1 0;0 1]; % source correlation matrix with uncorrelated signals
Rrr=A*Rss*A'+sig2*eye(M);
[V,D]=eig(Rrr);
[Y,Index]=sort(diag(D)); % sorts the eigenvalues from least to greatest
EN=V(:,Index(1:4)); % calculate the noise subspace matrix of eigenvectors
% using the sorting done in the previous line
for k=1:180;
th(k)=-pi/6+pi*k/(3*180);
clear a
a=[1];
for jj=2:M
a = [a exp(-1j*jj*pi*sin(th(k)))];
end
a=a.';
P(k)=1/abs(a.'*EN*EN'*u1);
end
plot(th*180/pi,10*log10(P/max(P)),'k')
grid on
xlabel('Angle')
ylabel('|P(\theta)|')
axis([-30 30 -30 10])
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -