?? unique_tree.inl
字號(hào):
/*******************************************************************************
Tree Container Library: Generic container library to store data in tree-like structures.
Copyright (c) 2006 Mitchel Haas
This software is provided 'as-is', without any express or implied warranty.
In no event will the author be held liable for any damages arising from
the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it freely,
subject to the following restrictions:
1. The origin of this software must not be misrepresented;
you must not claim that you wrote the original software.
If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such,
and must not be misrepresented as being the original software.
3. The above copyright notice and this permission notice may not be removed
or altered from any source distribution.
For complete documentation on this library, see http://www.datasoftsolutions.net
Email questions, comments or suggestions to mhaas@datasoftsolutions.net
*******************************************************************************/
#include <algorithm>
// copy constructor
template<typename stored_type, typename node_compare_type, typename node_order_compare_type>
tcl::unique_tree<stored_type, node_compare_type, node_order_compare_type>::unique_tree( const tree_type& rhs )
: associative_tree_type(rhs), pOrphans(0), allowing_orphans(false)
{
allowing_orphans = rhs.allowing_orphans; // copy orphan flag
if (rhs.pOrphans) { // orphans present?
basic_tree_type::allocate_tree_type(pOrphans, tree_type());
typename associative_tree_type::const_iterator it = rhs.pOrphans->begin();
const typename associative_tree_type::const_iterator it_end = rhs.pOrphans->end();
for ( ; it != it_end; ++it ) { // copy orphans
pOrphans->insert(*it.node());
}
} else
pOrphans = 0;
typename associative_tree_type::const_iterator it = rhs.begin();
const typename associative_tree_type::const_iterator it_end = rhs.end();
for ( ; it != it_end; ++it ) { // do deep copy by inserting children (and descendants)
insert(*it.node());
}
}
// assignment operator
template<typename stored_type, typename node_compare_type, typename node_order_compare_type>
tcl::unique_tree<stored_type, node_compare_type, node_order_compare_type>&
tcl::unique_tree<stored_type, node_compare_type, node_order_compare_type>::operator = (const tree_type& rhs)
{
if (!associative_tree_type::is_root()) // can assign only to root node
return *this;
if ( this == &rhs ) // check for self assignment
return *this;
clear();
basic_tree_type::operator =(rhs); // base class operation
allowing_orphans = rhs.allowing_orphans;
if (rhs.pOrphans) { // orphans present?
basic_tree_type::allocate_tree_type(pOrphans, tree_type()); // yes. copy them
typename associative_tree_type::const_iterator it = rhs.pOrphans->begin();
const typename associative_tree_type::const_iterator it_end = rhs.pOrphans->end();
for ( ; it != it_end; ++it ) {
pOrphans->insert(*it.node());
}
} else
pOrphans = 0;
typename associative_tree_type::const_iterator it = rhs.begin();
const typename associative_tree_type::const_iterator it_end = rhs.end();
for ( ; it != it_end; ++it ) { // copy all children (and descendants)
insert(*it.node());
}
return *this;
}
// set(const tree_type&)
template<typename stored_type, typename node_compare_type, typename node_order_compare_type>
void tcl::unique_tree<stored_type, node_compare_type, node_order_compare_type>::set(const tree_type& tree_obj)
{
if ( !check_for_duplicate(*tree_obj.get(), this)) { // duplicate node exist in tree?
// no. OK to set this node
basic_tree_type::set(*tree_obj.get());
typename associative_tree_type::const_iterator it = tree_obj.begin(), it_end = tree_obj.end();
for ( ; it != it_end; ++it ) { // insert any children
insert(*it.node());
}
if ( tree_obj.pOrphans && allow_orphans() ) { // copy orphans if any present
get_root()->pOrphans->set(*tree_obj.pOrphans );
}
}
}
// insert(const stored_type&)
template<typename stored_type, typename node_compare_type, typename node_order_compare_type>
typename tcl::unique_tree<stored_type, node_compare_type, node_order_compare_type>::child_iterator
tcl::unique_tree<stored_type, node_compare_type, node_order_compare_type>::insert(const stored_type& value)
{
const tree_type* const pRoot = get_root();
if ( allow_orphans() && pRoot->pOrphans ) { // orphans present?
// yes. check orphans for child
typename associative_tree_type::iterator oit = pRoot->pOrphans->find_deep(value);
if ( oit != pRoot->pOrphans->end() ) {
// child is an orphan. update orphan with new data
oit.node()->set(stored_type(value));
tree_type orphan;
orphan.set(*oit.node());
pRoot->pOrphans->erase(*oit);
return insert(orphan);
}
}
// stored obj doesn't already exist in an orphan
if ( !check_for_duplicate(value, this)) { // check for duplication
const typename associative_tree_type::iterator it = associative_tree_type::insert(value, this);
ordered_children.insert(it.node()); // no duplicate exists. insert new node
inform_grandparents(it.node(), this );
return it;
} else
return associative_tree_type::end(); // duplicate node exists. don't insert
}
// insert(const tree_type&)
template<typename stored_type, typename node_compare_type, typename node_order_compare_type>
typename tcl::unique_tree<stored_type, node_compare_type, node_order_compare_type>::child_iterator
tcl::unique_tree<stored_type, node_compare_type, node_order_compare_type>::insert(const tree_type& tree_obj )
{
if ( tree_obj.pOrphans && allow_orphans() ) { // have orphans?
get_root()->pOrphans->insert(*tree_obj.pOrphans ); // yes. copy orphans
}
// insert current node
typename associative_tree_type::iterator base_it = insert(*tree_obj.get());
if ( base_it == associative_tree_type::end() ) { // insert successful?
// no. but, the node may have existed here previously. check if so
base_it = associative_tree_type::find(*tree_obj.get());
}
if ( base_it != associative_tree_type::end() ) { // node exist?
typename associative_tree_type::const_iterator it = tree_obj.begin();
const typename associative_tree_type::const_iterator it_end = tree_obj.end();
// call this function recursively to insert children and descendants
for ( ; it != it_end; ++it )
base_it.node()->insert(*it.node());
}
return base_it;
}
// insert(const stored_type&, const stored_type&)
template<typename stored_type, typename node_compare_type, typename node_order_compare_type>
typename tcl::unique_tree<stored_type, node_compare_type, node_order_compare_type>::child_iterator
tcl::unique_tree<stored_type, node_compare_type, node_order_compare_type>::insert( const stored_type& parent_obj, const stored_type& value)
{
if ( !(parent_obj < *this->get()) && !(*this->get() < parent_obj) ) { // is this node the parent?
return insert(value); // yes. insert the node here.
}
// find parent node
typename associative_tree_type::iterator it, it_parent = find_deep(parent_obj);
const tree_type* const pRoot = get_root();
if ( it_parent != associative_tree_type::end() ) {
// found parent node,
if ( allow_orphans() && pRoot->pOrphans ) {
// orphans present. check orphans for child
typename associative_tree_type::iterator oit = pRoot->pOrphans->find_deep(value);
if ( oit != pRoot->pOrphans->end() ) {
// child is an orphan. update orphan with new data
oit.node()->set(stored_type(value));
tree_type orphan;
orphan.set(*oit.node());
pRoot->pOrphans->erase(*oit);
it = it_parent.node()->insert(orphan);
} else
it = it_parent.node()->insert(value); // child not an orphan. inset child node in parent
} else {
it = it_parent.node()->insert(value); // no orphans. insert child node in parent
}
if ( it == it_parent.node()->end() ) // was node inserted successfully?
return associative_tree_type::end(); // no. return proper end()
} else if (allow_orphans() ) {
// parent not found. do we have orphans?
if ( !pRoot->pOrphans ) {
basic_tree_type::allocate_tree_type(pRoot->pOrphans, tree_type()); // no, instanciate them
}
typename associative_tree_type::iterator oit = pRoot->pOrphans->find_deep(parent_obj);
// orphans contain parent?
if ( oit == pRoot->pOrphans->end() ) {
// no. create parent in orphans
oit = pRoot->pOrphans->insert(parent_obj);
pRoot->pOrphans->ordered_children.clear(); // orphans need no ordered children
}
typename associative_tree_type::iterator child_oit = pRoot->pOrphans->find_deep(value);
if ( child_oit != pRoot->pOrphans->end() ) {
// child is an orphan. update orphan with new data
child_oit.node()->set(stored_type(value));
tree_type orphan;
orphan.set(*child_oit.node());
pRoot->pOrphans->erase(*child_oit);
it = oit.node()->insert(orphan);
oit.node()->ordered_children.clear();
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -