?? d5r9.frm
字號:
VERSION 5.00
Begin VB.Form Form1
Caption = "Form1"
ClientHeight = 5160
ClientLeft = 60
ClientTop = 345
ClientWidth = 4680
LinkTopic = "Form1"
ScaleHeight = 5160
ScaleWidth = 4680
StartUpPosition = 3 'Windows Default
Begin VB.CommandButton Command1
Caption = "Command1"
Height = 375
Left = 3000
TabIndex = 0
Top = 4560
Width = 1335
End
End
Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
Private Sub Command1_Click()
'PROGRAM D5R9
'Driver for routine PCSHFT
NVAL = 40
PIO2 = 1.5707963
Dim C(40), D(40)
A = -PIO2
B = PIO2
Call CHEBFT(A, B, C(), NVAL)
Print
Print Tab(5); "How many terms in Chebyshev evaluation?"
'Input MVAL , between 6 and 40, MVAL=0 TO END
MVAL = 20
If (MVAL <= 0) Or (MVAL > NVAL) Then Exit Sub
Print Tab(5); MVAL
Call CHEBPC(C(), D(), MVAL)
Call PCSHFT(A, B, D(), MVAL)
'Test shifted polynomial
Print Tab(5); " X Actual Polynomial"
For I = -8 To 8 Step 1
X = I * PIO2 / 10#
POLY = D(MVAL)
For J = MVAL - 1 To 1 Step -1
POLY = POLY * X + D(J)
Next J
Print Tab(5); Format$(X, "#0.000000");
Print Tab(19); Format$(FUNC(X), "#0.000000");
Print Tab(33); Format$(POLY, "#0.000000")
Next I
End Sub
Function FUNC(X)
FUNC = (X ^ 2) * (X ^ 2 - 2#) * Sin(X)
End Function
Sub PCSHFT(A, B, D(), N)
CONST1 = 2# / (B - A)
FAC = CONST1
For J = 2 To N
D(J) = D(J) * FAC
FAC = FAC * CONST1
Next J
CONST1 = 0.5 * (A + B)
For J = 1 To N - 1
For K = N - 1 To J Step -1
D(K) = D(K) - CONST1 * D(K + 1)
Next K
Next J
End Sub
Sub CHEBFT(A, B, C(), N)
NMAX = 50
Dim F(50)
PI = 3.14159265358979
BMA = 0.5 * (B - A)
BPA = 0.5 * (B + A)
For K = 1 To N
Y = Cos(PI * (K - 0.5) / N)
F(K) = FUNC(Y * BMA + BPA)
Next K
FAC = 2# / N
For J = 1 To N
Sum = 0#
For K = 1 To N
Sum = Sum + F(K) * Cos((PI * (J - 1)) * ((K - 0.5) / N))
Next K
C(J) = FAC * Sum
Next J
End Sub
Sub CHEBPC(C(), D(), N)
Dim DD(50)
For J = 1 To N
D(J) = 0#
DD(J) = 0#
Next J
D(1) = C(N)
For J = N - 1 To 2 Step -1
For K = N - J + 1 To 2 Step -1
SV = D(K)
D(K) = 2# * D(K - 1) - DD(K)
DD(K) = SV
Next K
SV = D(1)
D(1) = -DD(1) + C(J)
DD(1) = SV
Next J
For J = N To 2 Step -1
D(J) = D(J - 1) - DD(J)
Next J
D(1) = -DD(1) + 0.5 * C(1)
End Sub
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -