?? valarray
字號(hào):
template<class _Ty> inline
valarray<_Ty> acos(const valarray<_Ty>& _X)
{_VALOP(_Ty, _X.size(), ::acos(_X[_I])); }
template<class _Ty> inline
valarray<_Ty> asin(const valarray<_Ty>& _X)
{_VALOP(_Ty, _X.size(), ::asin(_X[_I])); }
template<class _Ty> inline
valarray<_Ty> atan(const valarray<_Ty>& _X)
{_VALOP(_Ty, _X.size(), ::atan(_X[_I])); }
template<class _Ty> inline
valarray<_Ty> atan2(const valarray<_Ty>& _X,
const valarray<_Ty>& _Y)
{_VALOP(_Ty, _X.size(), ::atan2(_X[_I], _Y[_I])); }
template<class _Ty> inline
valarray<_Ty> atan2(const valarray<_Ty>& _X, const _Ty& _Y)
{_VALOP(_Ty, _X.size(), ::atan2(_X[_I], _Y)); }
template<class _Ty> inline
valarray<_Ty> atan2(const _Ty& _X, const valarray<_Ty>& _Y)
{_VALOP(_Ty, _Y.size(), ::atan2(_X, _Y[_I])); }
template<class _Ty> inline
valarray<_Ty> cos(const valarray<_Ty>& _X)
{_VALOP(_Ty, _X.size(), ::cos(_X[_I])); }
template<class _Ty> inline
valarray<_Ty> cosh(const valarray<_Ty>& _X)
{_VALOP(_Ty, _X.size(), ::cosh(_X[_I])); }
template<class _Ty> inline
valarray<_Ty> exp(const valarray<_Ty>& _X)
{_VALOP(_Ty, _X.size(), ::exp(_X[_I])); }
template<class _Ty> inline
valarray<_Ty> log(const valarray<_Ty>& _X)
{_VALOP(_Ty, _X.size(), ::log(_X[_I])); }
template<class _Ty> inline
valarray<_Ty> log10(const valarray<_Ty>& _X)
{_VALOP(_Ty, _X.size(), ::log10(_X[_I])); }
template<class _Ty> inline
valarray<_Ty> pow(const valarray<_Ty>& _X,
const valarray<_Ty>& _Y)
{_VALOP(_Ty, _X.size(), ::pow(_X[_I], _Y[_I])); }
template<class _Ty> inline
valarray<_Ty> pow(const valarray<_Ty>& _X, const _Ty& _Y)
{_VALOP(_Ty, _X.size(), ::pow(_X[_I], _Y)); }
template<class _Ty> inline
valarray<_Ty> pow(const _Ty& _X, const valarray<_Ty>& _Y)
{_VALOP(_Ty, _Y.size(), ::pow(_X, _Y[_I])); }
template<class _Ty> inline
valarray<_Ty> sin(const valarray<_Ty>& _X)
{_VALOP(_Ty, _X.size(), ::sin(_X[_I])); }
template<class _Ty> inline
valarray<_Ty> sinh(const valarray<_Ty>& _X)
{_VALOP(_Ty, _X.size(), ::sinh(_X[_I])); }
template<class _Ty> inline
valarray<_Ty> sqrt(const valarray<_Ty>& _X)
{_VALOP(_Ty, _X.size(), ::sqrt(_X[_I])); }
template<class _Ty> inline
valarray<_Ty> tan(const valarray<_Ty>& _X)
{_VALOP(_Ty, _X.size(), ::tan(_X[_I])); }
template<class _Ty> inline
valarray<_Ty> tanh(const valarray<_Ty>& _X)
{_VALOP(_Ty, _X.size(), ::tanh(_X[_I])); }
// CLASS slice
class slice {
public:
slice()
: _Start(0), _Len(0), _Stride(0) {}
slice(size_t _S, size_t _L, size_t _D)
: _Start(_S), _Len(_L), _Stride(_D) {}
size_t start() const
{return (_Start); }
size_t size() const
{return (_Len); }
size_t stride() const
{return (_Stride); }
protected:
size_t _Start, _Len, _Stride;
};
// TEMPLATE CLASS slice_array
#define _SLOP(RHS) \
size_t _N = _Start; \
for (size_t _I = 0; _I < _Len; ++_I, _N += _Stride) \
_Ptr[_N] RHS;
#define _SLOP2(RHS) \
size_t _N = _L.start(); \
for (size_t _I = 0; _I < _L.size(); \
++_I, _N += _L.stride()) \
_L._Data(_N) RHS;
template<class _Ty>
class slice_array : public slice {
public:
typedef _Ty value_type;
void operator=(const valarray<_Ty>& _R) const
{_SLOP(= _R[_I]); }
void operator=(const _Ty& _R)
{_SLOP(= _R); }
_Ty& _Data(size_t _I) const
{return (_Ptr[_I]); }
private:
friend class valarray<_Ty>;
slice_array(const slice& _Sl, _Ty *_Pd)
: slice(_Sl), _Ptr(_Pd) {}
_Ty *_Ptr;
};
// slice_array MEMBER TEMPLATE OPERATORS
template<class _Ty> inline
void operator*=(const slice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_SLOP2(*= _R[_I]); }
template<class _Ty> inline
void operator/=(const slice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_SLOP2(/= _R[_I]); }
template<class _Ty> inline
void operator%=(const slice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_SLOP2(%= _R[_I]); }
template<class _Ty> inline
void operator+=(const slice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_SLOP2(+= _R[_I]); }
template<class _Ty> inline
void operator-=(const slice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_SLOP2(-= _R[_I]); }
template<class _Ty> inline
void operator^=(const slice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_SLOP2(^= _R[_I]); }
template<class _Ty> inline
void operator&=(const slice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_SLOP2(&= _R[_I]); }
template<class _Ty> inline
void operator|=(const slice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_SLOP2(|= _R[_I]); }
template<class _Ty> inline
void operator<<=(const slice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_SLOP2(<<= _R[_I]); }
template<class _Ty> inline
void operator>>=(const slice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_SLOP2(>>= _R[_I]); }
// CLASS gslice
class gslice {
public:
gslice()
: _Start(0) {}
gslice(size_t _S, const _Sizarray& _L,
const _Sizarray& _D)
: _Start(_S), _Len(_L), _Stride(_D) {}
size_t start() const
{return (_Start); }
_Sizarray size() const
{return (_Len); }
_Sizarray stride() const
{return (_Stride); }
size_t _Nslice() const
{return (_Len.size()); }
size_t _Off(_Sizarray& _Idx) const
{size_t _I, _K = _Start;
for (_I = 0; _I < _Idx.size(); ++_I)
_K += _Idx[_I] * _Stride[_I];
while (0 < _I--)
if (++_Idx[_I] < _Len[_I])
break;
else
_Idx[_I] = 0;
return (_K); }
size_t _Totlen() const
{if (_Len.size() == 0)
return (0);
size_t _L = _Len[0];
for (size_t _I = 0; ++_I < _Len.size(); )
_L *= _Len[_I];
return (_L); }
private:
size_t _Start;
_Sizarray _Len;
_Sizarray _Stride;
};
// TEMPLATE CLASS gslice_array
#define _GSLOP(RHS) \
_Sizarray _Idx((size_t)0, _Nslice()); \
size_t _N = _Totlen(); \
for (size_t _I = 0; _I < _N; ++_I) \
_Ptr[_Off(_Idx)] RHS;
#define _GSLOP2(RHS) \
_Sizarray _Idx((size_t)0, _L._Nslice()); \
size_t _N = _L._Totlen(); \
for (size_t _I = 0; _I < _N; ++_I) \
_L._Data(_L._Off(_Idx)) RHS;
template<class _Ty>
class gslice_array : public gslice {
public:
typedef _Ty value_type;
void operator=(const valarray<_Ty>& _R) const
{_GSLOP(= _R[_I]); }
void operator=(const _Ty& _R)
{_GSLOP(= _R); }
_Ty& _Data(size_t _I) const
{return (_Ptr[_I]); }
private:
friend class valarray<_Ty>;
gslice_array(const gslice& _Gs, _Ty *_Pd)
: gslice(_Gs), _Ptr(_Pd) {}
_Ty *_Ptr;
};
// gslice_array MEMBER TEMPLATE OPERATORS
template<class _Ty> inline
void operator*=(const gslice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_GSLOP2(*= _R[_I]); }
template<class _Ty> inline
void operator/=(const gslice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_GSLOP2(/= _R[_I]); }
template<class _Ty> inline
void operator%=(const gslice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_GSLOP2(%= _R[_I]); }
template<class _Ty> inline
void operator+=(const gslice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_GSLOP2(+= _R[_I]); }
template<class _Ty> inline
void operator-=(const gslice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_GSLOP2(-= _R[_I]); }
template<class _Ty> inline
void operator^=(const gslice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_GSLOP2(^= _R[_I]); }
template<class _Ty> inline
void operator&=(const gslice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_GSLOP2(&= _R[_I]); }
template<class _Ty> inline
void operator|=(const gslice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_GSLOP2(|= _R[_I]); }
template<class _Ty> inline
void operator<<=(const gslice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_GSLOP2(<<= _R[_I]); }
template<class _Ty> inline
void operator>>=(const gslice_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_GSLOP2(>>= _R[_I]); }
// TEMPLATE CLASS mask_array
#define _MOP(RHS) \
size_t _N = 0; \
size_t _M = _Totlen(); \
for (size_t _I = 0; _I < _M; ++_N) \
if (_Mask(_N)) \
_Ptr[_N] RHS, ++_I;
#define _MOP2(RHS) \
size_t _N = 0; \
size_t _M = _L._Totlen(); \
for (size_t _I = 0; _I < _M; ++_N) \
if (_L._Mask(_N)) \
_L._Data(_N) RHS, ++_I;
template<class _Ty>
class mask_array {
public:
typedef _Ty value_type;
void operator=(const valarray<_Ty>& _R)
{_MOP(= _R[_I]); }
void operator=(const _Ty& _R)
{_MOP(= _R); }
_Ty& _Data(size_t _I) const
{return (_Ptr[_I]); }
bool _Mask(size_t _I) const
{return (_Marr[_I]); }
size_t _Totlen() const
{size_t _N = 0;
for (size_t _I = 0; _I < _Marr.size(); ++_I)
if (_Marr[_I])
++_N;
return (_N); }
private:
friend class valarray<_Ty>;
mask_array(const _Boolarray& _Ma, _Ty *_Pd)
: _Marr(_Ma), _Ptr(_Pd) {}
_Boolarray _Marr;
_Ty *_Ptr;
};
// mask_array MEMBER TEMPLATE OPERATORS
template<class _Ty> inline
void operator*=(const mask_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_MOP2(*= _R[_I]); }
template<class _Ty> inline
void operator/=(const mask_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_MOP2(/= _R[_I]); }
template<class _Ty> inline
void operator%=(const mask_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_MOP2(%= _R[_I]); }
template<class _Ty> inline
void operator+=(const mask_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_MOP2(+= _R[_I]); }
template<class _Ty> inline
void operator-=(const mask_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_MOP2(-= _R[_I]); }
template<class _Ty> inline
void operator^=(const mask_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_MOP2(^= _R[_I]); }
template<class _Ty> inline
void operator&=(const mask_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_MOP2(&= _R[_I]); }
template<class _Ty> inline
void operator|=(const mask_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_MOP2(|= _R[_I]); }
template<class _Ty> inline
void operator<<=(const mask_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_MOP2(<<= _R[_I]); }
template<class _Ty> inline
void operator>>=(const mask_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_MOP2(>>= _R[_I]); }
// TEMPLATE CLASS indirect_array
#define _IOP(RHS) \
size_t _L = _Totlen(); \
for (size_t _I = 0; _I < _L; ++_I) \
_Ptr[_Indir(_I)] RHS;
#define _IOP2(RHS) \
size_t _N = _L._Totlen(); \
for (size_t _I = 0; _I < _N; ++_I) \
_L._Data(_L._Indir(_I)) RHS;
template<class _Ty>
class indirect_array {
public:
typedef _Ty value_type;
void operator=(const valarray<_Ty>& _R) const
{_IOP(= _R[_I]); }
void operator=(const _Ty& _R)
{_IOP(= _R); }
_Ty& _Data(size_t _I) const
{return (_Ptr[_I]); }
size_t _Indir(size_t _I) const
{return (_Iarr[_I]); }
size_t _Totlen() const
{return (_Iarr.size()); }
private:
friend class valarray<_Ty>;
indirect_array(const _Sizarray& _Ia, _Ty *_Pd)
: _Iarr(_Ia), _Ptr(_Pd) {}
_Sizarray _Iarr;
_Ty *_Ptr;
};
// indirect_array MEMBER TEMPLATE OPERATORS
template<class _Ty> inline
void operator*=(const indirect_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_IOP2(*= _R[_I]); }
template<class _Ty> inline
void operator/=(const indirect_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_IOP2(/= _R[_I]); }
template<class _Ty> inline
void operator%=(const indirect_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_IOP2(%= _R[_I]); }
template<class _Ty> inline
void operator+=(const indirect_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_IOP2(+= _R[_I]); }
template<class _Ty> inline
void operator-=(const indirect_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_IOP2(-= _R[_I]); }
template<class _Ty> inline
void operator^=(const indirect_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_IOP2(^= _R[_I]); }
template<class _Ty> inline
void operator&=(const indirect_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_IOP2(&= _R[_I]); }
template<class _Ty> inline
void operator|=(const indirect_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_IOP2(|= _R[_I]); }
template<class _Ty> inline
void operator<<=(const indirect_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_IOP2(<<= _R[_I]); }
template<class _Ty> inline
void operator>>=(const indirect_array<_Ty>& _L,
const valarray<_Ty>& _R)
{_IOP2(>>= _R[_I]); }
// slice_array TEMPLATE FUNCTIONS
template<class _Ty> inline
valarray<_Ty>& valarray<_Ty>::operator=(
const slice_array<_Ty>& _Sl)
{_Grow(_Sl.size(), &_Sl._Data(_Sl.start()),
_Sl.stride(), true);
return (*this); }
template<class _Ty> inline
valarray<_Ty> valarray<_Ty>::operator[](slice _Sl) const
{return (valarray<_Ty>(slice_array<_Ty>(_Sl, _Ptr))); }
template<class _Ty> inline
slice_array<_Ty> valarray<_Ty>::operator[](slice _Sl)
{return (slice_array<_Ty>(_Sl, _Ptr)); }
// gslice_array TEMPLATE FUNCTIONS
template<class _Ty> inline
valarray<_Ty>& valarray<_Ty>::operator=(
const gslice_array<_Ty>& _Gs)
{_Grow(_Gs._Totlen(), 0, 0, true);
_Sizarray _Idx((size_t)0, _Gs._Nslice());
_VALGOP(= _Gs._Data(_Gs._Off(_Idx))); }
template<class _Ty> inline
valarray<_Ty> valarray<_Ty>::operator[](
const gslice& _Gs) const
{return (valarray<_Ty>(gslice_array<_Ty>(_Gs, _Ptr))); }
template<class _Ty> inline
gslice_array<_Ty> valarray<_Ty>::operator[](
const gslice& _Gs)
{return (gslice_array<_Ty>(_Gs, _Ptr)); }
// mask_array TEMPLATE FUNCTIONS
template<class _Ty> inline
valarray<_Ty>& valarray<_Ty>::operator=(
const mask_array<_Ty>& _Ma)
{_Grow(_Ma._Totlen(), 0, 0, true);
size_t _N = 0;
for (size_t _I = 0; _I < size(); ++_N)
if (_Ma._Mask(_N))
_Ptr[_I++] = _Ma._Data(_N);
return (*this); }
template<class _Ty> inline
valarray<_Ty> valarray<_Ty>::operator[](
const _Boolarray& _Ba) const
{return (valarray<_Ty>(mask_array<_Ty>(_Ba, _Ptr))); }
template<class _Ty> inline
mask_array<_Ty> valarray<_Ty>::operator[](
const _Boolarray& _Ba)
{return (mask_array<_Ty>(_Ba, _Ptr)); }
// indirect_array TEMPLATE FUNCTIONS
template<class _Ty> inline
valarray<_Ty>& valarray<_Ty>::operator=(
const indirect_array<_Ty>& _Ia)
{_Grow(_Ia._Totlen(), 0, 0, true);
_VALGOP(= _Ia._Data(_Ia._Indir(_I))); }
template<class _Ty> inline
valarray<_Ty> valarray<_Ty>::operator[](
const _Sizarray& _Ia) const
{return (valarray<_Ty>(indirect_array<_Ty>(_Ia, _Ptr))); }
template<class _Ty> inline
indirect_array<_Ty> valarray<_Ty>::operator[](
const _Sizarray& _Ia)
{return (indirect_array<_Ty>(_Ia, _Ptr)); }
_STD_END
#ifdef _MSC_VER
#pragma pack(pop)
#endif /* _MSC_VER */
#endif /* _VALARRAY_ */
/*
* Copyright (c) 1995 by P.J. Plauger. ALL RIGHTS RESERVED.
* Consult your license regarding permissions and restrictions.
*/
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -