亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? datapage.c

?? pid 算法的簡(jiǎn)單程序
?? C
?? 第 1 頁(yè) / 共 5 頁(yè)
字號(hào):
        BRA     done

L_NOPAGE:
        MOVW    0,SP, 0,Y         ;// store the value passed in X (high word)
        STD           2,Y         ;// store the value passed in D (low word)
done:
        PULX                      ;// restore X register
        MOVW    0,SP, 1,+SP       ;// move return address
        RTS
  }
#else /* USE_SEVERAL_PAGES */
  __asm {
        PSHD                      ;// save D register
        LDAA    PAGE_ADDR         ;// save page register
        LDAB    4,SP              ;// load page part of address
        STAB    PAGE_ADDR         ;// set page register
        STX     0,Y               ;// store the value passed in X
        MOVW    0,SP, 2,Y         ;// store the value passed in D (low word)
        STAA    PAGE_ADDR         ;// restore page register
        PULD                      ;// restore D register
        MOVW    0,SP, 1,+SP       ;// move return address
        RTS
  }
#endif /* USE_SEVERAL_PAGES */
}

/*--------------------------- _FAR_COPY_RC --------------------------------
  This runtime routine is used to access paged memory via a runtime function.
  It may also be used if the compiler  option -Cp is not used with the runtime argument.

  Arguments :
  - offset part of the source int the X register
  - page part of the source in the A register
  - offset part of the dest int the Y register
  - page part of the dest in the B register
  - number of bytes to be copied is defined by the next 2 bytes after the return address.

  Result :
  - memory area copied
  - no registers are saved, i.e. all registers may be destroyed
  - all page register still contain the same value as before the call
  - the function returns after the constant defining the number of bytes to be copied


  stack-structure at the loop-label:
     0,SP : destination offset
     2,SP : source page
     3,SP : destination page
     4,SP : source offset
     6,SP : points to length to be copied. This function returns after the size

  A usual call to this function looks like:

  struct Huge src, dest;
    ; ...
    LDX  #src
    LDAA #PAGE(src)
    LDY  #dest
    LDAB #PAGE(dest)
    JSR  _FAR_COPY_RC
    DC.W sizeof(struct Huge)
    ; ...

  --------------------------- _FAR_COPY_RC ----------------------------------*/

#ifdef __cplusplus
extern "C"
#endif
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME

void NEAR _FAR_COPY_RC(void) {
#if USE_SEVERAL_PAGES
  __asm {
        DEX                       ;// source addr-=1, because loop counter ends at 1
        PSHX                      ;// save source offset
        PSHD                      ;// save both pages
        DEY                       ;// destination addr-=1, because loop counter ends at 1
        PSHY                      ;// save destination offset
        LDY     6,SP              ;// Load Return address
        LDX     2,Y+              ;// Load Size to copy
        STY     6,SP              ;// Store adjusted return address
loop:
        LDD     4,SP              ;// load source offset
        LEAY    D,X               ;// calculate actual source address
        LDAB    2,SP              ;// load source page
        __PIC_JSR(_LOAD_FAR_8)    ;// load 1 source byte
        PSHB                      ;// save value
        LDD     0+1,SP            ;// load destination offset
        LEAY    D,X               ;// calculate actual destination address
        PULA                      ;// restore value
        LDAB    3,SP              ;// load destination page
        __PIC_JSR(_STORE_FAR_8)   ;// store one byte
        DEX
        BNE     loop
        LEAS    6,SP              ;// release stack
        _SRET                     ;// debug info only: This is the last instr of a function with a special return
        RTS                       ;// return
  }
#else
  __asm {
        PSHD                      ;// store page registers
        TFR     X,D
        PSHY                      ;// temporary space
        LDY     4,SP              ;// load return address
        ADDD    2,Y+              ;// calculate source end address. Increment return address
        STY     4,SP
        PULY
        PSHD                      ;// store src end address
        LDAB    2,SP              ;// reload source page
        LDAA    PAGE_ADDR         ;// save page register
        PSHA
loop:
        STAB    PAGE_ADDR         ;// set source page
        LDAA    1,X+              ;// load value
        MOVB    4,SP, PAGE_ADDR   ;// set destination page
        STAA    1,Y+
        CPX     1,SP
        BNE     loop

        LDAA    5,SP+             ;// restore old page value and release stack
        STAA    PAGE_ADDR         ;// store it into page register
        _SRET                     ;// debug info only: This is the last instr of a function with a special return
        RTS
  }
#endif
}

/*--------------------------- _FAR_COPY --------------------------------

  The _FAR_COPY runtime routine was used to copied large memory blocks in previous compiler releases.
  However this release now does use _FAR_COPY_RC instead. The only difference is how the size of 
  the area to be copied is passed into the function. For _FAR_COPY the size is passed on the stack just
  above the return address. _FAR_COPY_RC does expect the return address just after the JSR _FAR_COPY_RC call
  in the code of the caller. This allows for denser code calling _FAR_COPY_RC but does also need a slightly
  larger runtime routine and it is slightly slower.
  The _FAR_COPY routine is here now mainly for compatibility with previous releases. 
  The current compiler does not use it. 
  
--------------------------- _FAR_COPY ----------------------------------*/

#ifdef __cplusplus
extern "C"
#endif
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME

void NEAR _FAR_COPY(void) {
#if USE_SEVERAL_PAGES
  __asm {
        DEX                       ;// source addr-=1, because loop counter ends at 1
        PSHX                      ;// save source offset
        PSHD                      ;// save both pages
        DEY                       ;// destination addr-=1, because loop counter ends at 1
        PSHY                      ;// save destination offset
        LDX     8,SP              ;// load counter, assuming counter > 0

loop:
        LDD     4,SP              ;// load source offset
        LEAY    D,X               ;// calculate actual source address
        LDAB    2,SP              ;// load source page
        __PIC_JSR(_LOAD_FAR_8)    ;// load 1 source byte
        PSHB                      ;// save value
        LDD     0+1,SP            ;// load destination offset
        LEAY    D,X               ;// calculate actual destination address
        PULA                      ;// restore value
        LDAB    3,SP              ;// load destination page
        __PIC_JSR(_STORE_FAR_8)   ;// store one byte
        DEX
        BNE     loop
        LDX     6,SP              ;// load return address
        LEAS    10,SP             ;// release stack
        JMP     0,X               ;// return
  }
#else
  __asm {
        PSHD                      ;// store page registers
        TFR     X,D
        ADDD    4,SP              ;// calculate source end address
        STD     4,SP
        PULB                      ;// reload source page
        LDAA    PAGE_ADDR         ;// save page register
        PSHA
loop:
        STAB    PAGE_ADDR         ;// set source page
        LDAA    1,X+              ;// load value
        MOVB    1,SP, PAGE_ADDR   ;// set destination page
        STAA    1,Y+
        CPX     4,SP
        BNE     loop

        LDAA    2,SP+             ;// restore old page value and release stack
        STAA    PAGE_ADDR         ;// store it into page register
        LDX     4,SP+             ;// release stack and load return address
        JMP     0,X               ;// return
  }
#endif
}

#else  /* __HCS12X__  */

/*
  The HCS12X knows two different kind of addresses:
    - Logical addresses. E.g.
       MOVB #page(var),RPAGE
       INC var

    - Global addresses E.g.
       MOVB #page(var),GPAGE
       GLDAA var
       INCA
       GSTAA var

  Global addresses are used with G-Load's and G-Store's, logical addresses are used for all the other instructions
  and occasions. As HC12's or HCS12's do not have the G-Load and G-Store instructions,
  global addresses are not used with these processor families.
  They are only used with HCS12X chips (and maybe future ones deriving from a HCS12X).

  Logical and Global addresses can point to the same object, however the global and logical address of an object
  are different for most objects (actually for all except the registers from 0 to 0x7FF).
  Therefore the compiler needs to transform in between them.

  HCS12X Pointer types:

    The following are logical addresses:
    - all 16 bit pointers
       - "char* __near": always.
       - "char *" in the small and banked memory model
    - 24 bit dpage, epage, ppage or rpage pointers (*1) (note: the first HCS12X compilers may not support these pointer types)
       - "char *__dpage": Note this type only exists for
                          orthogonality with the HC12 A4 chip which has a DPAGE reg.
                          It does not apply to the HCS12X.
       - "char *__epage": 24 bit pointer using the EPAGE register
       - "char *__ppage": 24 bit pointer using the PPAGE register.
                          As the PPAGE is also used for BANKED code,
                          using this pointer type is only legal from non banked code.
       - "char *__rpage": 24 bit pointer using the RPAGE register


    The following are global addresses:
       "char*": in the large memory model (only HCS12X)
       "char* __far": always for HCS12X.

   (*1): For the HC12 and HCS12 "char* __far" and "char*" in the large memory model are also logical.

   Some notes for the HC12/HCS12 programmers.

   The address of a far object for a HC12 and for a HCS12X is different, even if they are at the same place in the memory map.
   For the HC12, a far address is using the logical addresses, for the HCS12X however, far addresses are using global addresses.
   This does cause troubles for the unaware!
   
   The conversion routines implemented in this file support the special HCS12XE RAM mapping (when RAMHM is set).
   To enable this mapping compile this file with the "-MapRAM" compiler option.

  HCS12X Logical Memory map

    Logical Addresses           Used for                shadowed at           page register     Global Address

    0x000000 .. 0x0007FF        Peripheral Registers                          Not Paged         0x000000
    0x??0800 .. 0x??0BFF        Paged EEPROM                                  EPAGE (@0x17)     0x100000+EPAGE*0x0400
    0x000C00 .. 0x000FFF        Non Paged EEPROM        0xFF0800..0xFF0FFF    Not Paged         0x13FC00
    0x??1000 .. 0x??1FFF        Paged RAM                                     RPAGE (@0x16)     0x000000+RPAGE*0x1000
    0x002000 .. 0x003FFF        Non Paged RAM           0xFE1000..0xFF1FFF    Not Paged         0x0FE000
    0x004000 .. 0x007FFF        Non Paged FLASH         0xFC8000..0xFCBFFF    Not Paged         0x7F4000
    0x??8000 .. 0x00BFFF        Paged FLASH                                   PPAGE (@0x30)     0x400000+PPAGE*0x4000
    0x00C000 .. 0x00FFFF        Non Paged FLASH         0xFF8000..0xFFBFFF    Not Paged         0x7FC000

    NA: Not Applicable

  HCS12X Global Memory map

    Global Addresses            Used for                Logical mapped at

    0x000000 .. 0x0007FF        Peripheral Registers    0x000000 .. 0x0007FF
    0x000800 .. 0x000FFF        DMA registers           Not mapped
    0x001000 .. 0x0FFFFF        RAM                     0x??1000 .. 0x??1FFF
    0x0FE000 .. 0x0FFFFF        RAM, Log non paged      0x002000 .. 0x003FFF
    0x100000 .. 0x13FFFF        EEPROM                  0x??0800 .. 0x??0BFF
    0x13FC00 .. 0x13FFFF        EEPROM  non paged       0x000C00 .. 0x000FFF
    0x140000 .. 0x3FFFFF        External Space          Not mapped
    0x400000 .. 0x7FFFFF        FLASH                   0x??8000 .. 0x??BFFF
    0x7F4000 .. 0x7F7FFF        FLASH, Log non paged    0x004000 .. 0x007FFF
    0x7FC000 .. 0x7FFFFF        FLASH, Log non paged    0x00C000 .. 0x00FFFF

  HCS12X Logical Memory map (RAM mapped) 

    Logical Addresses           Used for                shadowed at           page register     Global Address

    0x000000 .. 0x0007FF        Peripheral Registers                          Not Paged         0x000000
    0x??0800 .. 0x??0BFF        Paged EEPROM                                  EPAGE (@0x17)     0x100000+EPAGE*0x0400
    0x000C00 .. 0x000FFF        Non Paged EEPROM        0xFF0800..0xFF0FFF    Not Paged         0x13FC00
    0x??1000 .. 0x??1FFF        Paged RAM                                     RPAGE (@0x16)     0x000000+RPAGE*0x1000
    0x002000 .. 0x003FFF        Non Paged RAM           0xFE1000..0xFF1FFF    Not Paged         0x0FE000
    0x004000 .. 0x007FFF        Non Paged RAM           0xFA1000..0xFD1FFF    Not Paged         0FC000
    0x??8000 .. 0x00BFFF        Paged FLASH                                   PPAGE (@0x30)     0x400000+PPAGE*0x4000
    0x00C000 .. 0x00FFFF        Non Paged FLASH         0xFF8000..0xFFBFFF    Not Paged         0x7FC000

    NA: Not Applicable

  HCS12X Global Memory map

    Global Addresses            Used for                Logical mapped at

    0x000000 .. 0x0007FF        Peripheral Registers    0x000000 .. 0x0007FF
    0x000800 .. 0x000FFF        DMA registers           Not mapped
    0x001000 .. 0x0FFFFF        RAM                     0x??1000 .. 0x??1FFF
    0x0FA000 .. 0x0FFFFF        RAM, Log non paged      0x002000 .. 0x007FFF
    0x100000 .. 0x13FFFF        EEPROM                  0x??0800 .. 0x??0BFF
    0x13FC00 .. 0x13FFFF        EEPROM  non paged       0x000C00 .. 0x000FFF
    0x140000 .. 0x3FFFFF        External Space          Not mapped
    0x400000 .. 0x7FFFFF        FLASH                   0x??8000 .. 0x??BFFF
    0x7F4000 .. 0x7F7FFF        FLASH, Log non paged    Not mapped
    0x7FC000 .. 0x7FFFFF        FLASH, Log non paged    0x00C000 .. 0x00FFFF


  How to read this table:
    For logical addresses, the lower 16 bits of the address do determine in which area the address is,
    if this address is paged, then this entry also controls and which of the EPAGE, PPAGE or RPAGE
    page register is controlling the bits 16 to 23 of the address.
    For global addresses, the bits 16 to 23 have to be in the GPAGE register and the lower 16 bits
    have to be used with the special G load or store instructions (e.g. GLDAA).
    As example the logical address 0x123456 is invalid. Because its lower bits 0x3456 are in a
    non paged area, so the page 0x12 does not exist.
    The address 0xFE1020 however does exist. Do access it, the RPAGE has to contain 0xFE and the
    offset 0x1020 has to be used.

      ORG $7000
        MOVB #0xFE, 0x16 ; RPAGE
        LDAA 0x1020      ; reads at the logical address 0xFE1020

    Because the last two RAM pages are also accessible directly from 0x2000 to 0x3FFF, the
    following shorter code does read the same memory location:

      ORG $7000
        LDAA 0x2020      ; reads at the logical address 0x2020
                         ;   which maps to the same memory as 0xFE1020

    This memory location now also has a global address. For logical 0xFE1020 the global address is 0x0FE020.
    So the following code does once more access the same memory location:

      ORG $7000
        MOVB #0x0F, 0x10 ; GPAGE
        LDAA 0xE020      ; reads at the global address 0x0FE020
                         ;   which maps to the same memory as the logical addr. 0xFE1020

    Therefore every memory location for the HCS12X has up to 3 different addresses.
    Up to two logical and one global.
    Notes.
      - Not every address has a logical equivalent. The external space is only available in the global address space.
        The DMA Registers are also only addressable with global addresses.

      - The PPAGE can only be set if the code is outside of the 0x8000 to 0xBFFF range.
        If not, the next code fetch will be from the new wrong PPAGE value.

      - Inside of the paged area, the highest pages are allocated first. So all HCS12X's do have the FF pages
        (if they have this memory type at all).

      - For RPAGE, the value 0 is illegal. Otherwise the global addresses would overlap with the registers.
        This has the implication that the logical address 0x001000 is strictly seen not valid.


*/

#if __OPTION_ACTIVE__("-MapRAM")
#define __HCS12XE_RAMHM_SET__
#endif

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲国产va精品久久久不卡综合| 亚洲成人激情社区| 欧美日韩一区二区电影| 激情成人午夜视频| 亚洲午夜三级在线| 国产免费久久精品| 日韩视频免费观看高清完整版在线观看| 成人性视频网站| 美女高潮久久久| 亚洲一区日韩精品中文字幕| 久久精品一区二区| 欧美精品久久一区二区三区| 99精品1区2区| 成人激情免费电影网址| 久久草av在线| 青娱乐精品视频| 亚洲在线视频免费观看| 亚洲欧洲日韩女同| 国产女主播一区| 26uuuu精品一区二区| 欧美一级夜夜爽| 欧美老人xxxx18| 欧美三级乱人伦电影| 91丨porny丨蝌蚪视频| 国产成人夜色高潮福利影视| 久久99精品久久久久久国产越南| 亚洲va欧美va国产va天堂影院| 亚洲精品国产第一综合99久久 | 99在线热播精品免费| 国产美女久久久久| 韩国欧美国产一区| 免费成人性网站| 日本成人在线不卡视频| 亚洲mv在线观看| 亚洲18色成人| 日本免费新一区视频| 视频在线观看91| 视频一区视频二区中文| 水蜜桃久久夜色精品一区的特点| 亚洲高清免费观看高清完整版在线观看 | 麻豆中文一区二区| 日韩在线卡一卡二| 欧美bbbbb| 久久精品国产999大香线蕉| 麻豆一区二区三| 久久99热狠狠色一区二区| 捆绑变态av一区二区三区| 麻豆国产一区二区| 国产精品一区2区| bt欧美亚洲午夜电影天堂| 99热在这里有精品免费| 99精品在线免费| 欧美日韩在线免费视频| 欧美精品在线一区二区三区| 日韩欧美国产精品| 久久久久久综合| 最新久久zyz资源站| 一区二区三区精品视频| 三级久久三级久久久| 精一区二区三区| 国产91露脸合集magnet| 色综合色狠狠天天综合色| 欧美丝袜丝nylons| 欧美videos大乳护士334| 久久久精品蜜桃| 中文字幕在线视频一区| 一区二区三区.www| 欧美aaaaaa午夜精品| 国产一区二区不卡| 色综合天天综合在线视频| 日韩一区二区免费电影| 精品久久久久久综合日本欧美| 国产亚洲欧美在线| 亚洲免费毛片网站| 视频一区国产视频| 国产在线不卡一区| 色老头久久综合| 日韩精品一区二区三区在线播放| 国产网站一区二区三区| 一区二区三区欧美在线观看| 久久99国产精品尤物| 99免费精品视频| 日韩欧美一区二区视频| 国产精品你懂的在线| 日韩专区一卡二卡| 成人小视频免费观看| 欧美一区三区二区| 国产精品久久久久四虎| 婷婷久久综合九色综合伊人色| 国产大陆精品国产| 91精品午夜视频| 中文一区在线播放| 免费看欧美美女黄的网站| 成人黄色片在线观看| 欧美一级黄色录像| 亚洲色欲色欲www| 国产一区二区在线免费观看| 欧美色手机在线观看| 国产精品午夜春色av| 日本sm残虐另类| 一本大道久久精品懂色aⅴ | 欧美激情综合五月色丁香小说| 亚洲国产精品尤物yw在线观看| 国产乱一区二区| 欧美一激情一区二区三区| 亚洲精品欧美专区| 国产精品1024久久| 日韩三级在线免费观看| 一区二区三区鲁丝不卡| 波多野结衣欧美| 久久久国产一区二区三区四区小说| 日韩影院免费视频| 欧美在线视频你懂得| 国产精品久久久久精k8| 国产乱人伦偷精品视频不卡| 欧美一区二区网站| 午夜欧美视频在线观看 | 亚洲精品一线二线三线无人区| 午夜欧美2019年伦理| 在线看日本不卡| 亚洲三级小视频| 99久久国产免费看| 国产精品每日更新| 国产成人精品一区二区三区四区 | 久久久国产精品午夜一区ai换脸| 日本不卡不码高清免费观看| 在线不卡免费欧美| 亚洲成人福利片| 欧美色图免费看| 天天操天天综合网| 欧美日韩精品电影| 日韩国产在线一| 欧美情侣在线播放| 午夜在线电影亚洲一区| 欧美日韩免费视频| 婷婷丁香久久五月婷婷| 欧美精品色一区二区三区| 爽爽淫人综合网网站| 日韩亚洲欧美在线观看| 日本美女一区二区三区视频| 欧美一区二区三区不卡| 狂野欧美性猛交blacked| 日韩免费成人网| 国产一区二区在线视频| 国产精品毛片高清在线完整版| 成人午夜av电影| 亚洲精品自拍动漫在线| 在线免费亚洲电影| 日韩avvvv在线播放| 欧美不卡激情三级在线观看| 国产在线不卡一卡二卡三卡四卡| 久久新电视剧免费观看| 成人午夜私人影院| 一区二区在线看| 67194成人在线观看| 老鸭窝一区二区久久精品| 久久久久久久久久电影| 成人激情免费网站| 亚洲综合丁香婷婷六月香| 欧美蜜桃一区二区三区| 美腿丝袜亚洲色图| 国产精品久久免费看| 欧美色成人综合| 久久精品理论片| 国产精品免费网站在线观看| 在线精品观看国产| 美腿丝袜亚洲色图| 亚洲欧洲精品一区二区三区不卡| 欧美私人免费视频| 国产一区二区在线免费观看| 亚洲男人的天堂网| 欧美一二三区精品| av电影在线不卡| 日本午夜一本久久久综合| 久久这里只有精品首页| 91麻豆成人久久精品二区三区| 丝袜美腿高跟呻吟高潮一区| 久久久影视传媒| 欧美性生活一区| 国产乱一区二区| 亚洲成人免费看| 国产精品麻豆视频| 制服丝袜一区二区三区| 成人看片黄a免费看在线| 首页国产丝袜综合| 国产精品毛片a∨一区二区三区| 8x8x8国产精品| a4yy欧美一区二区三区| 日韩高清中文字幕一区| 一区在线观看免费| 精品国产乱码久久久久久闺蜜| 色综合天天天天做夜夜夜夜做| 蜜臀av性久久久久蜜臀aⅴ| 中文字幕中文字幕一区| 亚洲精品一区二区三区在线观看 | 欧美中文字幕一二三区视频| 国产精品影音先锋| 免费观看一级欧美片| 一片黄亚洲嫩模| 国产精品久久久久三级|