亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? eigenvaluedecomposition.java

?? 美國標準化組織和馬里蘭大學共同開發.實現java matrix包. JAMA由六個java類組成:Matrix, CholeskyDecomposition , LUDecomposition QR
?? JAVA
?? 第 1 頁 / 共 2 頁
字號:
package Jama;
import Jama.util.*;

/** Eigenvalues and eigenvectors of a real matrix. 
<P>
    If A is symmetric, then A = V*D*V' where the eigenvalue matrix D is
    diagonal and the eigenvector matrix V is orthogonal.
    I.e. A = V.times(D.times(V.transpose())) and 
    V.times(V.transpose()) equals the identity matrix.
<P>
    If A is not symmetric, then the eigenvalue matrix D is block diagonal
    with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
    lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda].  The
    columns of V represent the eigenvectors in the sense that A*V = V*D,
    i.e. A.times(V) equals V.times(D).  The matrix V may be badly
    conditioned, or even singular, so the validity of the equation
    A = V*D*inverse(V) depends upon V.cond().
**/

public class EigenvalueDecomposition implements java.io.Serializable {

/* ------------------------
   Class variables
 * ------------------------ */

   /** Row and column dimension (square matrix).
   @serial matrix dimension.
   */
   private int n;

   /** Symmetry flag.
   @serial internal symmetry flag.
   */
   private boolean issymmetric;

   /** Arrays for internal storage of eigenvalues.
   @serial internal storage of eigenvalues.
   */
   private double[] d, e;

   /** Array for internal storage of eigenvectors.
   @serial internal storage of eigenvectors.
   */
   private double[][] V;

   /** Array for internal storage of nonsymmetric Hessenberg form.
   @serial internal storage of nonsymmetric Hessenberg form.
   */
   private double[][] H;

   /** Working storage for nonsymmetric algorithm.
   @serial working storage for nonsymmetric algorithm.
   */
   private double[] ort;

/* ------------------------
   Private Methods
 * ------------------------ */

   // Symmetric Householder reduction to tridiagonal form.

   private void tred2 () {

   //  This is derived from the Algol procedures tred2 by
   //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
   //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
   //  Fortran subroutine in EISPACK.

      for (int j = 0; j < n; j++) {
         d[j] = V[n-1][j];
      }

      // Householder reduction to tridiagonal form.
   
      for (int i = n-1; i > 0; i--) {
   
         // Scale to avoid under/overflow.
   
         double scale = 0.0;
         double h = 0.0;
         for (int k = 0; k < i; k++) {
            scale = scale + Math.abs(d[k]);
         }
         if (scale == 0.0) {
            e[i] = d[i-1];
            for (int j = 0; j < i; j++) {
               d[j] = V[i-1][j];
               V[i][j] = 0.0;
               V[j][i] = 0.0;
            }
         } else {
   
            // Generate Householder vector.
   
            for (int k = 0; k < i; k++) {
               d[k] /= scale;
               h += d[k] * d[k];
            }
            double f = d[i-1];
            double g = Math.sqrt(h);
            if (f > 0) {
               g = -g;
            }
            e[i] = scale * g;
            h = h - f * g;
            d[i-1] = f - g;
            for (int j = 0; j < i; j++) {
               e[j] = 0.0;
            }
   
            // Apply similarity transformation to remaining columns.
   
            for (int j = 0; j < i; j++) {
               f = d[j];
               V[j][i] = f;
               g = e[j] + V[j][j] * f;
               for (int k = j+1; k <= i-1; k++) {
                  g += V[k][j] * d[k];
                  e[k] += V[k][j] * f;
               }
               e[j] = g;
            }
            f = 0.0;
            for (int j = 0; j < i; j++) {
               e[j] /= h;
               f += e[j] * d[j];
            }
            double hh = f / (h + h);
            for (int j = 0; j < i; j++) {
               e[j] -= hh * d[j];
            }
            for (int j = 0; j < i; j++) {
               f = d[j];
               g = e[j];
               for (int k = j; k <= i-1; k++) {
                  V[k][j] -= (f * e[k] + g * d[k]);
               }
               d[j] = V[i-1][j];
               V[i][j] = 0.0;
            }
         }
         d[i] = h;
      }
   
      // Accumulate transformations.
   
      for (int i = 0; i < n-1; i++) {
         V[n-1][i] = V[i][i];
         V[i][i] = 1.0;
         double h = d[i+1];
         if (h != 0.0) {
            for (int k = 0; k <= i; k++) {
               d[k] = V[k][i+1] / h;
            }
            for (int j = 0; j <= i; j++) {
               double g = 0.0;
               for (int k = 0; k <= i; k++) {
                  g += V[k][i+1] * V[k][j];
               }
               for (int k = 0; k <= i; k++) {
                  V[k][j] -= g * d[k];
               }
            }
         }
         for (int k = 0; k <= i; k++) {
            V[k][i+1] = 0.0;
         }
      }
      for (int j = 0; j < n; j++) {
         d[j] = V[n-1][j];
         V[n-1][j] = 0.0;
      }
      V[n-1][n-1] = 1.0;
      e[0] = 0.0;
   } 

   // Symmetric tridiagonal QL algorithm.
   
   private void tql2 () {

   //  This is derived from the Algol procedures tql2, by
   //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
   //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
   //  Fortran subroutine in EISPACK.
   
      for (int i = 1; i < n; i++) {
         e[i-1] = e[i];
      }
      e[n-1] = 0.0;
   
      double f = 0.0;
      double tst1 = 0.0;
      double eps = Math.pow(2.0,-52.0);
      for (int l = 0; l < n; l++) {

         // Find small subdiagonal element
   
         tst1 = Math.max(tst1,Math.abs(d[l]) + Math.abs(e[l]));
         int m = l;
         while (m < n) {
            if (Math.abs(e[m]) <= eps*tst1) {
               break;
            }
            m++;
         }
   
         // If m == l, d[l] is an eigenvalue,
         // otherwise, iterate.
   
         if (m > l) {
            int iter = 0;
            do {
               iter = iter + 1;  // (Could check iteration count here.)
   
               // Compute implicit shift
   
               double g = d[l];
               double p = (d[l+1] - g) / (2.0 * e[l]);
               double r = Maths.hypot(p,1.0);
               if (p < 0) {
                  r = -r;
               }
               d[l] = e[l] / (p + r);
               d[l+1] = e[l] * (p + r);
               double dl1 = d[l+1];
               double h = g - d[l];
               for (int i = l+2; i < n; i++) {
                  d[i] -= h;
               }
               f = f + h;
   
               // Implicit QL transformation.
   
               p = d[m];
               double c = 1.0;
               double c2 = c;
               double c3 = c;
               double el1 = e[l+1];
               double s = 0.0;
               double s2 = 0.0;
               for (int i = m-1; i >= l; i--) {
                  c3 = c2;
                  c2 = c;
                  s2 = s;
                  g = c * e[i];
                  h = c * p;
                  r = Maths.hypot(p,e[i]);
                  e[i+1] = s * r;
                  s = e[i] / r;
                  c = p / r;
                  p = c * d[i] - s * g;
                  d[i+1] = h + s * (c * g + s * d[i]);
   
                  // Accumulate transformation.
   
                  for (int k = 0; k < n; k++) {
                     h = V[k][i+1];
                     V[k][i+1] = s * V[k][i] + c * h;
                     V[k][i] = c * V[k][i] - s * h;
                  }
               }
               p = -s * s2 * c3 * el1 * e[l] / dl1;
               e[l] = s * p;
               d[l] = c * p;
   
               // Check for convergence.
   
            } while (Math.abs(e[l]) > eps*tst1);
         }
         d[l] = d[l] + f;
         e[l] = 0.0;
      }
     
      // Sort eigenvalues and corresponding vectors.
   
      for (int i = 0; i < n-1; i++) {
         int k = i;
         double p = d[i];
         for (int j = i+1; j < n; j++) {
            if (d[j] < p) {
               k = j;
               p = d[j];
            }
         }
         if (k != i) {
            d[k] = d[i];
            d[i] = p;
            for (int j = 0; j < n; j++) {
               p = V[j][i];
               V[j][i] = V[j][k];
               V[j][k] = p;
            }
         }
      }
   }

   // Nonsymmetric reduction to Hessenberg form.

   private void orthes () {
   
      //  This is derived from the Algol procedures orthes and ortran,
      //  by Martin and Wilkinson, Handbook for Auto. Comp.,
      //  Vol.ii-Linear Algebra, and the corresponding
      //  Fortran subroutines in EISPACK.
   
      int low = 0;
      int high = n-1;
   
      for (int m = low+1; m <= high-1; m++) {
   
         // Scale column.
   
         double scale = 0.0;
         for (int i = m; i <= high; i++) {
            scale = scale + Math.abs(H[i][m-1]);
         }
         if (scale != 0.0) {
   
            // Compute Householder transformation.
   
            double h = 0.0;
            for (int i = high; i >= m; i--) {
               ort[i] = H[i][m-1]/scale;
               h += ort[i] * ort[i];
            }
            double g = Math.sqrt(h);
            if (ort[m] > 0) {
               g = -g;
            }
            h = h - ort[m] * g;
            ort[m] = ort[m] - g;
   
            // Apply Householder similarity transformation
            // H = (I-u*u'/h)*H*(I-u*u')/h)
   
            for (int j = m; j < n; j++) {
               double f = 0.0;
               for (int i = high; i >= m; i--) {
                  f += ort[i]*H[i][j];
               }
               f = f/h;
               for (int i = m; i <= high; i++) {
                  H[i][j] -= f*ort[i];
               }
           }
   
           for (int i = 0; i <= high; i++) {
               double f = 0.0;
               for (int j = high; j >= m; j--) {
                  f += ort[j]*H[i][j];
               }
               f = f/h;
               for (int j = m; j <= high; j++) {
                  H[i][j] -= f*ort[j];
               }
            }
            ort[m] = scale*ort[m];
            H[m][m-1] = scale*g;
         }
      }
   
      // Accumulate transformations (Algol's ortran).

      for (int i = 0; i < n; i++) {
         for (int j = 0; j < n; j++) {
            V[i][j] = (i == j ? 1.0 : 0.0);
         }
      }

      for (int m = high-1; m >= low+1; m--) {
         if (H[m][m-1] != 0.0) {
            for (int i = m+1; i <= high; i++) {
               ort[i] = H[i][m-1];
            }
            for (int j = m; j <= high; j++) {
               double g = 0.0;
               for (int i = m; i <= high; i++) {
                  g += ort[i] * V[i][j];
               }
               // Double division avoids possible underflow
               g = (g / ort[m]) / H[m][m-1];
               for (int i = m; i <= high; i++) {
                  V[i][j] += g * ort[i];
               }
            }
         }
      }
   }


   // Complex scalar division.

   private transient double cdivr, cdivi;
   private void cdiv(double xr, double xi, double yr, double yi) {
      double r,d;
      if (Math.abs(yr) > Math.abs(yi)) {
         r = yi/yr;
         d = yr + r*yi;
         cdivr = (xr + r*xi)/d;
         cdivi = (xi - r*xr)/d;
      } else {
         r = yr/yi;
         d = yi + r*yr;
         cdivr = (r*xr + xi)/d;
         cdivi = (r*xi - xr)/d;
      }
   }


   // Nonsymmetric reduction from Hessenberg to real Schur form.

   private void hqr2 () {
   
      //  This is derived from the Algol procedure hqr2,
      //  by Martin and Wilkinson, Handbook for Auto. Comp.,
      //  Vol.ii-Linear Algebra, and the corresponding
      //  Fortran subroutine in EISPACK.
   
      // Initialize
   
      int nn = this.n;
      int n = nn-1;
      int low = 0;
      int high = nn-1;
      double eps = Math.pow(2.0,-52.0);
      double exshift = 0.0;
      double p=0,q=0,r=0,s=0,z=0,t,w,x,y;
   
      // Store roots isolated by balanc and compute matrix norm
   
      double norm = 0.0;
      for (int i = 0; i < nn; i++) {
         if (i < low | i > high) {
            d[i] = H[i][i];
            e[i] = 0.0;
         }
         for (int j = Math.max(i-1,0); j < nn; j++) {
            norm = norm + Math.abs(H[i][j]);
         }
      }
   
      // Outer loop over eigenvalue index
   
      int iter = 0;
      while (n >= low) {
   
         // Look for single small sub-diagonal element
   
         int l = n;
         while (l > low) {
            s = Math.abs(H[l-1][l-1]) + Math.abs(H[l][l]);
            if (s == 0.0) {
               s = norm;
            }
            if (Math.abs(H[l][l-1]) < eps * s) {
               break;
            }
            l--;
         }
       
         // Check for convergence
         // One root found
   
         if (l == n) {
            H[n][n] = H[n][n] + exshift;
            d[n] = H[n][n];
            e[n] = 0.0;
            n--;
            iter = 0;
   
         // Two roots found
   
         } else if (l == n-1) {
            w = H[n][n-1] * H[n-1][n];
            p = (H[n-1][n-1] - H[n][n]) / 2.0;
            q = p * p + w;
            z = Math.sqrt(Math.abs(q));
            H[n][n] = H[n][n] + exshift;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
在线电影欧美成精品| 亚洲视频综合在线| 日韩一区二区三区在线视频| 欧美性欧美巨大黑白大战| 91色|porny| 在线观看国产一区二区| 欧美在线你懂的| 欧美性极品少妇| 欧美色视频在线| 在线电影一区二区三区| 在线电影一区二区三区| 欧美一级二级三级蜜桃| 日韩一区二区在线看| 欧美精品一区二区三区蜜臀| 精品国产乱码久久久久久闺蜜| 日韩精品中文字幕在线一区| 久久只精品国产| 中文无字幕一区二区三区| 六月丁香婷婷久久| 奇米777欧美一区二区| 奇米精品一区二区三区在线观看一| 日本不卡一区二区| 激情综合网最新| 国产不卡免费视频| 一本大道久久a久久精品综合| 一本大道久久a久久精二百| 欧美日韩国产另类不卡| 日韩免费在线观看| 欧美激情综合网| 一区二区三区四区乱视频| 亚洲一区二区三区四区在线 | 亚洲va欧美va人人爽| 天天影视涩香欲综合网| 久久99精品视频| 成人av资源站| 欧美日韩第一区日日骚| 欧美成人精品1314www| 中文字幕欧美激情一区| 亚洲一线二线三线视频| 久久99国产精品免费| 波多野结衣中文字幕一区 | 国产精品伊人色| 91视频在线看| 日韩欧美国产一区在线观看| 中文字幕av不卡| 亚洲福利国产精品| 国产一区二区三区免费播放| 色女孩综合影院| 精品国产免费一区二区三区香蕉| 国产精品久久久久aaaa樱花| 日韩av在线发布| 99精品久久久久久| 欧美一级生活片| 自拍av一区二区三区| 蜜桃视频在线观看一区| 成人黄色国产精品网站大全在线免费观看 | 精品成人一区二区三区| 中日韩av电影| 蜜桃av一区二区在线观看| 99精品国产一区二区三区不卡| 欧美一区二区免费视频| 亚洲人午夜精品天堂一二香蕉| 蜜桃视频在线一区| 欧美专区日韩专区| 欧美国产一区在线| 另类成人小视频在线| 色婷婷亚洲综合| 国产亲近乱来精品视频 | 在线亚洲高清视频| 国产欧美一区二区三区网站| 日韩精品一区第一页| 97久久精品人人做人人爽50路| 精品少妇一区二区三区在线播放 | 97精品久久久午夜一区二区三区| 欧美成人高清电影在线| 午夜亚洲福利老司机| av亚洲产国偷v产偷v自拍| 亚洲精品一区二区三区精华液| 亚洲bt欧美bt精品777| 97国产精品videossex| 国产亚洲美州欧州综合国| 免费观看久久久4p| 欧美日本乱大交xxxxx| 一区二区三区成人| 成人av电影免费在线播放| 久久久综合精品| 青青草国产成人99久久| 欧美日韩精品欧美日韩精品一| 中文字幕佐山爱一区二区免费| 国产精品99久久久久久久女警| 日韩欧美一卡二卡| 日韩成人午夜电影| 欧美日韩国产经典色站一区二区三区| 中文字幕一区二区三区av| 成人午夜精品在线| 久久久不卡影院| 国产一区二区三区国产| 日韩欧美久久久| 青青草国产成人99久久| 欧美一区二区视频免费观看| 天堂av在线一区| 欧美人妖巨大在线| 日韩av网站免费在线| 亚洲色图.com| 99久久婷婷国产| 亚洲欧美综合另类在线卡通| av在线免费不卡| 亚洲色欲色欲www| 91浏览器在线视频| 亚洲一二三区视频在线观看| 欧美日韩国产精品成人| 日本欧美一区二区在线观看| 欧美一区二区三区视频在线观看| 奇米综合一区二区三区精品视频| 日韩精品最新网址| 极品少妇xxxx精品少妇| 国产日产欧美一区| 99久久国产综合精品女不卡| 亚洲欧美另类久久久精品| 欧美在线你懂得| 日韩精品视频网站| 精品国产亚洲在线| 粉嫩av一区二区三区在线播放| 国产精品五月天| 91亚洲精品乱码久久久久久蜜桃| 亚洲精品乱码久久久久久黑人| 欧美色男人天堂| 日韩制服丝袜av| 亚洲精品一区二区三区精华液| 成人久久视频在线观看| 玉米视频成人免费看| 欧美妇女性影城| 国内久久精品视频| 一区在线中文字幕| 欧美午夜影院一区| 久久成人久久爱| 国产亚洲精品aa| 色丁香久综合在线久综合在线观看| 亚洲午夜影视影院在线观看| 日韩区在线观看| 成人蜜臀av电影| 日韩精品欧美精品| 欧美韩国日本综合| 欧美亚洲国产怡红院影院| 久久不见久久见免费视频1| 中文字幕不卡在线观看| 欧美在线综合视频| 国产剧情一区在线| 亚洲激情五月婷婷| 日韩欧美电影在线| 91视频国产资源| 美女视频黄久久| 亚洲美女区一区| 欧美v国产在线一区二区三区| 99久久久精品免费观看国产蜜| 午夜久久电影网| 国产欧美精品在线观看| 在线播放中文一区| 北条麻妃一区二区三区| 日韩激情中文字幕| 自拍偷拍亚洲综合| 精品嫩草影院久久| 欧美性色综合网| 粉嫩av亚洲一区二区图片| 偷拍自拍另类欧美| 亚洲欧洲日韩一区二区三区| 精品国产乱码久久久久久久| 在线看日本不卡| 成人免费看黄yyy456| 日本不卡高清视频| 亚洲人成人一区二区在线观看 | 婷婷六月综合网| 中文字幕欧美三区| 日韩欧美一区在线观看| 日本黄色一区二区| 国产成人精品免费视频网站| 午夜精品一区二区三区电影天堂| 国产精品国模大尺度视频| 精品国产乱码久久久久久闺蜜| 欧美老女人第四色| 91麻豆国产精品久久| 国产一区二区三区久久悠悠色av | 99久久99久久综合| 国产91丝袜在线播放九色| 美女mm1313爽爽久久久蜜臀| 亚洲一区二区影院| 椎名由奈av一区二区三区| 国产肉丝袜一区二区| 欧美一区日本一区韩国一区| 欧美视频中文字幕| 91美女福利视频| 9i在线看片成人免费| 成人亚洲精品久久久久软件| 久草在线在线精品观看| 蜜臀av性久久久久蜜臀aⅴ四虎| 亚洲一级不卡视频| 亚洲自拍偷拍av| 亚洲一线二线三线视频| 有码一区二区三区| 亚洲美女在线一区|