?? qctrainer.h
字號:
// Copyright (C) 2003 Ronan Collobert (collober@idiap.ch)
//
// This file is part of Torch 3.
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef QC_TRAINER_INC
#define QC_TRAINER_INC
#include "Trainer.h"
#include "QCMachine.h"
#include "QCCache.h"
namespace Torch {
/** Train a #QCMachine#.
With the conventions of QCMachine.h,
Q is given by the class QCCache (in #cache#)
Options:
\begin{tabular}{lcll}
"unshrink" & bool & unshrink or not unshrink & [false] \\
"max unshrink" & int & maximal number of unshrinking & [1] \\
"iter shrink" & int & minimal number of iterations to shrink& [100] \\
"eps shrink" & real & shrinking accuracy & [1E-4 (f) 1E-9 (d)] \\
"end accuracy" & real & end accuracy & [0.01] \\
"iter message" & int & number of iterations between messages & [1000]
\end{tabular}
Note: "iter shrink" must be carefully chosen.
Read http://www.ai.mit.edu/projects/jmlr/papers/volume1/collobert01a/collobert01a.ps.gz
for more details.
@author Ronan Collobert (collober@idiap.ch)
@see QCCache
@see QCMachine
*/
class QCTrainer : public Trainer
{
public:
// ohhh boy, c'est la zone
QCMachine *qcmachine;
QCCache *cache;
int n_unshrink;
int n_max_unshrink;
real *k_xi;
real *k_xj;
real old_alpha_xi;
real old_alpha_xj;
real current_error;
int *active_var_new;
int n_active_var_new;
int n_alpha; // le nb de alphas
bool deja_shrink;
bool unshrink_mode;
real *y;
real *alpha;
real *grad;
real eps_shrink;
real end_eps;
real bound_eps;
int n_active_var;
int *active_var;
int *not_at_bound_at_iter;
int iter;
int n_iter_min_to_shrink;
int n_iter_message;
char *status_alpha;
real *Cup;
real *Cdown;
//-----
///
QCTrainer(QCMachine *qcmachine_);
/** Train it...
Before calling this function, #grad# in #qcmachine#
must contain the gradient of QP(alpha) with respect
to alpha = 0.
( = $beta$, with the conventions of QCMachine.h)
Moreover #alpha# in #qcmachine# has to be zero.
*/
void train(DataSet *data, MeasurerList *measurers);
//-----
void prepareToLaunch();
void atomiseAll();
bool bCompute();
bool selectVariables(int *i, int *j);
int checkShrinking(real bmin, real bmax);
void shrink();
void unShrink();
void analyticSolve(int xi, int xj);
void updateStatus(int i);
inline bool isNotUp(int i) { return(status_alpha[i] != 2); };
inline bool isNotDown(int i) { return(status_alpha[i] != 1); };
virtual ~QCTrainer();
};
}
#endif
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -