?? cadvantagelearning.cpp
字號:
// Copyright (C) 2003
// Gerhard Neumann (gerhard@igi.tu-graz.ac.at)
//
// This file is part of RL Toolbox.
// http://www.igi.tugraz.at/ril_toolbox
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <math.h>
#include "ril_debug.h"
#include "cadvantagelearning.h"
#include "cpolicies.h"
/*CAdvantageUpdating::CAdvantageUpdating(CRewardFunction *rewardFunction, CAbstractQFunction *qfunction, CVFunctionLearner *vLearner, rlt_real dt) : CTDLearner(rewardFunction, qfunction, qfunction->getStandardETraces(), NULL)
{
this->vFunctionLearner = vLearner;
this->vFunction = vLearner->getVFunction();
this->dt = dt;
addParameter("NormalizeRate", 0.2);
addParameter("TimeScale", 1.0);
}*/
CAdvantageUpdating::CAdvantageUpdating(CRewardFunction *rewardFunction, CAbstractQFunction *qfunction, CAbstractVFunction *vFunction, rlt_real dt) : CTDLearner(rewardFunction, qfunction, qfunction->getStandardETraces(), NULL)
{
//this->vFunctionLearner = NULL;
this->vFunction = vFunction;
vETraces = vFunction->getStandardETraces();
addParameter("TimeIntervall", dt);
addParameter("NormalizeRate", 0.2);
addParameter("VLearningRate", 0.2);
addParameter("TimeScale", 1.0);
addParameter("DiscountFactor", 0.95);
}
CAdvantageUpdating::~CAdvantageUpdating()
{
delete vETraces;
}
rlt_real CAdvantageUpdating::getTemporalDifference(CStateCollection *oldState, CAction *action, rlt_real reward, CStateCollection *nextState)
{
rlt_real K = getParameter("TimeScale");
rlt_real gamma = getParameter("DiscountFactor");
rlt_real dt = getParameter("TimeIntervall");
rlt_real currentMaxValue = qfunction->getMaxValue(oldState, qfunction->getActions());
rlt_real oldVValue = vFunction->getValue(oldState);
rlt_real newVValue = vFunction->getValue(nextState);
rlt_real currentValue = qfunction->getValue(oldState, action);
rlt_real temporalDifference = currentMaxValue + (reward + (pow(gamma, dt * action->getDuration()) * newVValue) - oldVValue) / (dt * K * action->getDuration()) - currentValue;
DebugPrint('t', "Advantage Updating: %f %f %f %f %f, TD: %f\n", oldVValue, newVValue, currentMaxValue, currentValue, reward, temporalDifference);
return temporalDifference;
}
void CAdvantageUpdating::addETraces(CStateCollection *oldState, CStateCollection *newState, CAction *action)
{
etraces->addETrace(oldState, action);
vETraces->addETrace(oldState);
}
void CAdvantageUpdating::learnStep(CStateCollection *oldState, CAction *action, rlt_real reward, CStateCollection *nextState)
{
rlt_real oldMax = qfunction->getMaxValue(oldState, qfunction->getActions());
rlt_real newMax = 0.0;
etraces->updateETraces(action);
addETraces(oldState, nextState, action);
etraces->updateQFunction(getParameter("QLearningRate") * getTemporalDifference(oldState, action, reward, nextState));
newMax = qfunction->getMaxValue(oldState, qfunction->getActions());
if (fabs(oldMax - newMax) > 0.00001)
{
vETraces->updateVFunction(getParameter("VLearningRate") * (newMax - oldMax) / getParameter("QLearningRate"));
//vFunction->updateValue(oldState, getParameter("VLearningRate") * (newMax - oldMax) / getParameter("QLearningRate"));
}
// Normalize Step
DebugPrint('t', "NormalizeStep: Aref: %f\n", newMax);
CActionSet::iterator it = qfunction->getActions()->begin();
for (; it != qfunction->getActions()->end(); it ++)
{
DebugPrint('t', "%f -> ",qfunction->getValue(oldState, *it));
qfunction->updateValue(oldState, *it, - newMax * getParameter("NormalizeRate"));
DebugPrint('t', "%f, ", qfunction->getValue(oldState, *it));
}
}
CAdvantageLearner::CAdvantageLearner(CRewardFunction *rewardFunction, CGradientQFunction *qfunction, rlt_real dt, CAbstractBetaCalculator *betaCalc) : CTDResidualLearner(rewardFunction, qfunction, new CQGreedyPolicy(qfunction->getActions(), qfunction), NULL, NULL, betaCalc)
{
addParameter("TimeIntervall", dt);
addParameter("TimeScale", 1.0);
addParameter("DiscountFactor", 0.95);
actionDataSet2 = new CActionDataSet(qfunction->getActions());
}
CAdvantageLearner::~CAdvantageLearner()
{
delete estimationPolicy;
delete actionDataSet2;
}
rlt_real CAdvantageLearner::getTemporalDifference(CStateCollection *oldState, CAction *action, rlt_real reward, CStateCollection *nextState)
{
int duration = action->getDuration();
rlt_real K = getParameter("TimeScale");
rlt_real dt = getParameter("TimeIntervall");
rlt_real gamma = getParameter("DiscountFactor");
return (reward + pow(gamma, dt * duration) * qfunction->getValue(nextState, lastEstimatedAction, actionDataSet->getActionData(lastEstimatedAction))) / (dt * duration * K) + (1 - 1/(dt * duration * K)) * qfunction->getMaxValue(oldState, qfunction->getActions()) - qfunction->getValue(oldState, action);
}
void CAdvantageLearner::addETraces(CStateCollection *oldState, CStateCollection *newState, CAction *action, rlt_real td)
{
if (lastEstimatedAction == NULL)
{
lastEstimatedAction = qfunction->getMax(newState, qfunction->getActions(), actionDataSet);
}
rlt_real duration = action->getDuration();
rlt_real K = getParameter("TimeScale");
rlt_real dt = getParameter("TimeIntervall");
oldGradient->clear();
newGradient->clear();
residualGradientFeatures->clear();
gradientQFunction->getGradient(oldState, action, action->getActionData(), oldGradient);
gradientQFunction->getGradient(newState, lastEstimatedAction, actionDataSet->getActionData(lastEstimatedAction), newGradient);
CAction *maxCurrentAction = qfunction->getMax(oldState, qfunction->getActions(),actionDataSet2);
gradientQFunction->getGradient(oldState, maxCurrentAction, actionDataSet2->getActionData(maxCurrentAction), residualGradientFeatures);
residualGradientFeatures->multFactor(- (1 - 1/(dt * duration * K)));
residualGradientFeatures->add(oldGradient, 1.0);
residualGradientFeatures->add(newGradient, - pow(getParameter("DiscountFactor"), dt * duration) / (dt * duration * K));
directGradientTraces->addGradientETrace(oldGradient, td);
residualGradientTraces->addGradientETrace(residualGradientFeatures, - td);
// Add Direct Gradient
gradientQETraces->addGradientETrace(oldGradient, 1.0);
if (getParameter("ScaleResidualGradient") > 0.5)
{
residualGradientFeatures->multFactor(oldGradient->getLength() / residualGradientFeatures->getLength());
}
// Add Residual Gradient
residualETraces->addGradientETrace(residualGradientFeatures, 1.0);
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -