亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? cagentlistener.h

?? 強(qiáng)化學(xué)習(xí)算法(R-Learning)難得的珍貴資料
?? H
字號(hào):
// Copyright (C) 2003
// Gerhard Neumann (gerhard@igi.tu-graz.ac.at)

//                
// This file is part of RL Toolbox.
// http://www.igi.tugraz.at/ril_toolbox
//
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
// 1. Redistributions of source code must retain the above copyright
//    notice, this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright
//    notice, this list of conditions and the following disclaimer in the
//    documentation and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
//    derived from this software without specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
// IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
// OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
// IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef CSEMIMDPLISTENER_H
#define CSEMIMDPLISTENER_H

#include "cparameters.h"
#include "ril_debug.h"

class CAction;
class CState;
class CStateCollection;
class CRewardFunction;

/// Interface for all SemiMDP Listeners. 
/**This class is the base class of all Learning and Logging objects. If the listeners get added to a CSemiMarkovDecisionProcess the listener 
gets informed about all Steps from the SMDP and wether to start a new Episode.
<p>
There are 3 different kind of events which can be sent to the Listener:
	- nextStep(CStateCollection *oldState, CAction *action, CStateCollection *nextState). The Listener gets S-A-S Tuple of
	the current step. Usually this is the only data a learning algorithm needs (including the reward which ca be calculated from the S-A-S tuple).
	- intermediateStep(CStateCollection *oldState, CAction *action, CStateCollection *nextState). Only needed for Hierarchical Reinforcement Learning. The Listener gets the same data as in nextStep, but instead of a rlt_real step, the S-A-S tuple comes from an intermediate step from an extended Action (see CExtendedAction for 
	Details about intermediate steps). The difference is made because intermediate steps has to be treated differently in some cases (e.g. ETraces)
	- newEpisode(). Indicates that a new Episode has startet.

One or more of this event-functions should be implemented by all subclasses.
The class is also subclass of CParameterObject, so the paramters of the listeners can be set through that interface
@see CSemiMDPSender
@see CSemiMarkovDecisionProcess
@see CParamterObject
*/
class CSemiMDPListener : virtual public CParameterObject
{
public:
	bool enabled;
	
	CSemiMDPListener() {enabled = true;};

	/// sends the Listener the S-A-S tuple from a new step
	virtual void nextStep(CStateCollection *oldState, CAction *action, CStateCollection *nextState) {};
	/// sends the Listener the S-A-S tuple from a indermediate step
	virtual void intermediateStep(CStateCollection *oldState, CAction *action, CStateCollection *nextState) {};
	/// tells the Listener that a new Episode has startet.
	virtual void newEpisode() {};
};


///Represents SMDP Listener which also need a reward
/** The CSemiMDPRewardListener maintains a reward function. With this reward function, each time a nextStep or an
intermediateStep event occurs the listener can calculate the reward and then he calls the specific abstract event function with the
S-A-R(eward)-S tuple. 
*/
class CSemiMDPRewardListener : public CSemiMDPListener
{
protected:
/// reward function for reward calculation
	CRewardFunction *semiMDPRewardFunction;

public:
/** @param semiMDPRewardFunction reward function for reward calculation*/
	CSemiMDPRewardListener(CRewardFunction *semiMDPRewardFunction);

/// Calculates the reward and then calls nextStep(...) with the reward as additional argument.
	virtual void nextStep(CStateCollection *oldState, CAction *action, CStateCollection *nextState);
/// virtual function, to be implemented by subclass
	virtual void nextStep(CStateCollection *oldState, CAction *action, rlt_real reward, CStateCollection *nextState) {};

/// Calculates the reward and then calls intermediateStep(...) with the reward as additional argument.
	virtual void intermediateStep(CStateCollection *oldState, CAction *action, CStateCollection *nextState);
/// virtual function, to be implemented by subclass
	virtual void intermediateStep(CStateCollection *oldState, CAction *action, rlt_real reward, CStateCollection *nextState) {};

	void setRewardFunction(CRewardFunction *semiMDPRewardFunction);
	CRewardFunction *getRewardFunction();
};

/// Adaptive Parameter Calculator which calculates the parameter's value from the number of learning steps
/**
The target value in this class is the number of learning steps, so its target value is unbounded. The target value gets resetted to 0 if a new learning trial has started.
This adaptive parameter has to be added to the agent's listener list in order to count the number of steps.
For more details see the super class. 
Parameters of CAdaptiveParameterFromNStepsCalculator:
see CAdaptiveParameterUnBoundedValuesCalculator
*/
class CAdaptiveParameterFromNStepsCalculator : public CAdaptiveParameterUnBoundedValuesCalculator, public CSemiMDPListener
{
protected:

public:
	CAdaptiveParameterFromNStepsCalculator(int functionKind, rlt_real param0, rlt_real paramScale, rlt_real targetOffset, rlt_real targetScale);
	virtual ~CAdaptiveParameterFromNStepsCalculator();

	virtual void nextStep(CStateCollection *, CAction *, CStateCollection *);
	virtual void onParametersChanged(){CAdaptiveParameterUnBoundedValuesCalculator::onParametersChanged();}; 
};

/// Adaptive Parameter Calculator which calculates the parameter's value from the number of learning episodes
/**
The target value in this class is the number of learning episodes, so its target value is unbounded. The target value gets resetted to 0 if a new learning trial has started.
This adaptive parameter has to be added to the agent's listener list in order to count the number of episodes.
For more details see the super class. 
Parameters of CAdaptiveParameterFromNStepsCalculator:
see CAdaptiveParameterUnBoundedValuesCalculator
*/
class CAdaptiveParameterFromNEpisodesCalculator : public CAdaptiveParameterUnBoundedValuesCalculator, public CSemiMDPListener
{
protected:

public:
	CAdaptiveParameterFromNEpisodesCalculator(int functionKind, rlt_real param0, rlt_real paramScale, rlt_real targetOffset, rlt_real targetScale);
	virtual ~CAdaptiveParameterFromNEpisodesCalculator();

	virtual void newEpisode();
	virtual void onParametersChanged(){CAdaptiveParameterUnBoundedValuesCalculator::onParametersChanged();}; 

};


/// Adaptive Parameter Calculator which calculates the parameter's value from the current average reward
/**
The target value in this class is the current average reward. The target value gets resetted the minimim expected reward if a new learning trial has started.
This adaptive parameter has to be added to the agent's listener list in order to calculate the average reward. The average reward is calculated dynamically with the formular averagereward_t+1 = averagereward_t * alpha + reward_t+1 * (1 - alpha). Alpha can be set with the parameter "APRewardUpdateRate" and defines the update rate of the average reward. Alpha should be choosen close to 0.99 to get good results. The average reward is not resetted when a new episode begins.
For more details see the super class. 
Parameters of CAdaptiveParameterFromNStepsCalculator:
- "APRewardUpdateRate": Update rate for the average reward.
see CAdaptiveParameterBoundedValuesCalculator
*/
class CAdaptiveParameterFromAverageRewardCalculator : public CAdaptiveParameterBoundedValuesCalculator, public CSemiMDPRewardListener
{
protected:
	rlt_real alpha;
public:
	CAdaptiveParameterFromAverageRewardCalculator(CRewardFunction *reward, int functionKind, rlt_real paramMin, rlt_real paramMax, rlt_real targetMin, rlt_real targetMax, rlt_real alpha);
	~CAdaptiveParameterFromAverageRewardCalculator();

	virtual void nextStep(CStateCollection *oldState, CAction *action, rlt_real reward, CStateCollection *newState);
	virtual void onParametersChanged(); 
};

#endif // CSEMIMDPLISTENER_H

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美性xxxxx极品少妇| 久久在线免费观看| 国产+成+人+亚洲欧洲自线| 一区二区在线观看免费 | 3d动漫精品啪啪| 成人app软件下载大全免费| 免费在线一区观看| 亚洲影院理伦片| 国产精品麻豆99久久久久久| 日韩欧美专区在线| 欧美色精品在线视频| www.综合网.com| 国产精品一区二区三区网站| 日韩黄色片在线观看| 亚洲精品视频免费看| 国产精品网站在线播放| 久久日韩精品一区二区五区| 制服丝袜激情欧洲亚洲| 欧美制服丝袜第一页| 成人晚上爱看视频| 国产激情一区二区三区| 久久不见久久见免费视频7| 午夜天堂影视香蕉久久| 亚洲黄色小说网站| 亚洲欧美在线观看| 欧美激情一区二区| 久久精品男人的天堂| 精品免费视频一区二区| 欧美一区二区视频在线观看2022 | 色国产综合视频| 99免费精品在线| 99精品欧美一区二区三区综合在线| 国产呦精品一区二区三区网站| 久久99精品国产.久久久久 | 三级不卡在线观看| 日本不卡一区二区三区高清视频| 五月天亚洲婷婷| 日韩国产一二三区| 图片区日韩欧美亚洲| 亚洲午夜视频在线观看| 亚洲最新视频在线播放| 亚洲主播在线观看| 五月天久久比比资源色| 日韩高清不卡一区| 图片区小说区国产精品视频| 首页国产丝袜综合| 日韩vs国产vs欧美| 激情文学综合丁香| 粉嫩久久99精品久久久久久夜| 国产成人亚洲综合a∨猫咪| 国产99久久久国产精品潘金网站| 成人涩涩免费视频| 一本一道波多野结衣一区二区| 欧美在线观看视频一区二区| 欧美日韩色一区| 91精品黄色片免费大全| 亚洲欧美中日韩| 亚洲乱码国产乱码精品精小说| 一级特黄大欧美久久久| 日本在线播放一区二区三区| 精品一区二区三区香蕉蜜桃| 国产成人午夜高潮毛片| 色综合视频一区二区三区高清| 欧美亚洲综合网| 91精品国产高清一区二区三区蜜臀 | 欧美电影免费观看高清完整版在线 | 国产亚洲精品7777| 自拍偷拍亚洲综合| 日韩在线一二三区| 国产精品99久久久久久久vr| 成人sese在线| 欧美日韩aaaaaa| 久久久久久免费网| 亚洲欧美视频在线观看| 日韩avvvv在线播放| 国产福利91精品| 色婷婷香蕉在线一区二区| 日韩一区二区电影在线| 国产人妖乱国产精品人妖| 一区二区三区在线看| 精品一区二区三区免费视频| 97久久精品人人做人人爽 | 国产精品视频麻豆| 亚洲chinese男男1069| 国产乱码字幕精品高清av | 亚洲欧美怡红院| 婷婷成人激情在线网| 国产传媒欧美日韩成人| 欧美日韩精品综合在线| 国产精品色呦呦| 午夜激情一区二区| 91麻豆精品视频| 日韩精品一区在线| 亚洲婷婷在线视频| 久久99精品国产.久久久久久| 91久久精品网| 国产精品色哟哟| 毛片av中文字幕一区二区| 色猫猫国产区一区二在线视频| 日韩一级大片在线| 亚洲欧美另类小说视频| 高清不卡一区二区| 日韩欧美国产电影| 亚洲网友自拍偷拍| 91浏览器在线视频| 国产欧美一区在线| 久久99日本精品| 欧美精品乱码久久久久久按摩| 国产精品成人一区二区三区夜夜夜 | 26uuu精品一区二区在线观看| 亚洲精品少妇30p| 国产激情91久久精品导航 | 91麻豆精品国产自产在线 | 国产成人精品三级麻豆| 日韩一区二区免费视频| 亚洲午夜精品17c| 日本黄色一区二区| 日韩美女精品在线| 成人avav影音| 亚洲国产精品传媒在线观看| 国产综合色精品一区二区三区| 日韩亚洲欧美中文三级| 午夜电影久久久| 欧美日韩国产经典色站一区二区三区 | 欧美精品日日鲁夜夜添| 洋洋av久久久久久久一区| 色综合久久中文综合久久牛| 中文字幕一区在线| 成人不卡免费av| 国产精品久久综合| www.av亚洲| 18涩涩午夜精品.www| 99久久婷婷国产综合精品| 国产精品久久久久久久久快鸭| 成人午夜视频免费看| 中文字幕+乱码+中文字幕一区| 国产成人在线观看| 国产欧美一区二区精品久导航| 国产一区二区久久| 欧美激情一二三区| 色香色香欲天天天影视综合网| 亚洲精品日韩专区silk| 欧美亚洲一区二区三区四区| 亚洲午夜在线观看视频在线| 91精品久久久久久久99蜜桃| 老鸭窝一区二区久久精品| 久久久久久一级片| eeuss鲁片一区二区三区在线观看| 日韩码欧中文字| 欧美日韩一区二区三区免费看| 日本一区中文字幕 | 中文字幕一区二区三区在线观看| eeuss影院一区二区三区| 玉米视频成人免费看| 欧美日韩国产免费| 国产在线乱码一区二区三区| 欧美激情一二三区| 91福利视频网站| 91久久线看在观草草青青| 亚洲一区二区三区激情| 日韩欧美亚洲国产另类| 国产精品18久久久久久久久| 国产精品福利一区二区三区| 欧美性猛交xxxx黑人交| 蜜臀91精品一区二区三区| 欧美韩国一区二区| 欧美视频完全免费看| 精品一区二区三区的国产在线播放| 日本一区二区成人在线| 欧美三片在线视频观看| 另类小说视频一区二区| 国产精品久久久久久妇女6080| 色噜噜狠狠一区二区三区果冻| 日韩电影在线免费看| 国产精品色一区二区三区| 欧美人xxxx| 丁香婷婷深情五月亚洲| 日韩影院精彩在线| √…a在线天堂一区| 91精品国产综合久久久蜜臀图片| 国产成人av电影在线| 天堂资源在线中文精品| 国产精品色哟哟| 日韩美一区二区三区| 日本二三区不卡| 经典一区二区三区| 亚洲自拍另类综合| 国产精品天干天干在线综合| 欧美一区二区三区在| 99国产精品久| 狠狠色丁香婷综合久久| 亚洲一区二区三区三| 国产精品美女www爽爽爽| 日韩三级.com| 在线观看区一区二| www.日韩精品| 国产高清精品网站| 免费日本视频一区| 亚洲福利视频三区| 综合在线观看色|