亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tktrig.c

?? linux系統下的音頻通信
?? C
?? 第 1 頁 / 共 3 頁
字號:
	    } else {		y = MIN(pPtr[3], pointPtr[1]);		y = MAX(y, pPtr[1]);	    }	} else if (pPtr[3] == pPtr[1]) {	    /*	     * Horizontal edge.	     */	    y = pPtr[1];	    if (pPtr[0] >= pPtr[2]) {		x = MIN(pPtr[0], pointPtr[0]);		x = MAX(x, pPtr[2]);		if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[0])			&& (pointPtr[0] >= pPtr[2])) {		    intersections++;		}	    } else {		x = MIN(pPtr[2], pointPtr[0]);		x = MAX(x, pPtr[0]);		if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[2])			&& (pointPtr[0] >= pPtr[0])) {		    intersections++;		}	    }	} else {	    double m1, b1, m2, b2;	    int lower;			/* Non-zero means point below line. */	    /*	     * The edge is neither horizontal nor vertical.  Convert the	     * edge to a line equation of the form y = m1*x + b1.  Then	     * compute a line perpendicular to this edge but passing	     * through the point, also in the form y = m2*x + b2.	     */	    m1 = (pPtr[3] - pPtr[1])/(pPtr[2] - pPtr[0]);	    b1 = pPtr[1] - m1*pPtr[0];	    m2 = -1.0/m1;	    b2 = pointPtr[1] - m2*pointPtr[0];	    x = (b2 - b1)/(m1 - m2);	    y = m1*x + b1;	    if (pPtr[0] > pPtr[2]) {		if (x > pPtr[0]) {		    x = pPtr[0];		    y = pPtr[1];		} else if (x < pPtr[2]) {		    x = pPtr[2];		    y = pPtr[3];		}	    } else {		if (x > pPtr[2]) {		    x = pPtr[2];		    y = pPtr[3];		} else if (x < pPtr[0]) {		    x = pPtr[0];		    y = pPtr[1];		}	    }	    lower = (m1*pointPtr[0] + b1) > pointPtr[1];	    if (lower && (pointPtr[0] >= MIN(pPtr[0], pPtr[2]))		    && (pointPtr[0] < MAX(pPtr[0], pPtr[2]))) {		intersections++;	    }	}	/*	 * Compute the distance to the closest point, and see if that	 * is the best distance seen so far.	 */	dist = hypot(pointPtr[0] - x, pointPtr[1] - y);	if (dist < bestDist) {	    bestDist = dist;	}    }    /*     * We've processed all of the points.  If the number of intersections     * is odd, the point is inside the polygon.     */    if (intersections & 0x1) {	return 0.0;    }    return bestDist;}/* *-------------------------------------------------------------- * * TkPolygonToArea -- * *	Determine whether a polygon lies entirely inside, entirely *	outside, or overlapping a given rectangular area. * * Results: *	-1 is returned if the polygon given by polyPtr and numPoints *	is entirely outside the rectangle given by rectPtr.  0 is *	returned if the polygon overlaps the rectangle, and 1 is *	returned if the polygon is entirely inside the rectangle. * * Side effects: *	None. * *-------------------------------------------------------------- */intTkPolygonToArea(polyPtr, numPoints, rectPtr)    double *polyPtr;		/* Points to an array coordinates for				 * closed polygon:  x0, y0, x1, y1, ...				 * The polygon may be self-intersecting. */    int numPoints;		/* Total number of points at *polyPtr. */    register double *rectPtr;	/* Points to coords for rectangle, in the				 * order x1, y1, x2, y2.  X1 and y1 must				 * be lower-left corner. */{    int state;			/* State of all edges seen so far (-1 means				 * outside, 1 means inside, won't ever be				 * 0). */    int count;    register double *pPtr;    /*     * Iterate over all of the edges of the polygon and test them     * against the rectangle.  Can quit as soon as the state becomes     * "intersecting".     */    state = TkLineToArea(polyPtr, polyPtr+2, rectPtr);    if (state == 0) {	return 0;    }    for (pPtr = polyPtr+2, count = numPoints-1; count >= 2;	    pPtr += 2, count--) {	if (TkLineToArea(pPtr, pPtr+2, rectPtr) != state) {	    return 0;	}    }    /*     * If all of the edges were inside the rectangle we're done.     * If all of the edges were outside, then the rectangle could     * still intersect the polygon (if it's entirely enclosed).     * Call TkPolygonToPoint to figure this out.     */    if (state == 1) {	return 1;    }    if (TkPolygonToPoint(polyPtr, numPoints, rectPtr) == 0.0) {	return 0;    }    return -1;}/* *-------------------------------------------------------------- * * TkOvalToPoint -- * *	Computes the distance from a given point to a given *	oval, in canvas units. * * Results: *	The return value is 0 if the point given by *pointPtr is *	inside the oval.  If the point isn't inside the *	oval then the return value is approximately the distance *	from the point to the oval.  If the oval is filled, then *	anywhere in the interior is considered "inside";  if *	the oval isn't filled, then "inside" means only the area *	occupied by the outline. * * Side effects: *	None. * *-------------------------------------------------------------- */	/* ARGSUSED */doubleTkOvalToPoint(ovalPtr, width, filled, pointPtr)    double ovalPtr[4];		/* Pointer to array of four coordinates				 * (x1, y1, x2, y2) defining oval's bounding				 * box. */    double width;		/* Width of outline for oval. */    int filled;			/* Non-zero means oval should be treated as				 * filled;  zero means only consider outline. */    double pointPtr[2];		/* Coordinates of point. */{    double xDelta, yDelta, scaledDistance, distToOutline, distToCenter;    double xDiam, yDiam;    /*     * Compute the distance between the center of the oval and the     * point in question, using a coordinate system where the oval     * has been transformed to a circle with unit radius.     */    xDelta = (pointPtr[0] - (ovalPtr[0] + ovalPtr[2])/2.0);    yDelta = (pointPtr[1] - (ovalPtr[1] + ovalPtr[3])/2.0);    distToCenter = hypot(xDelta, yDelta);    scaledDistance = hypot(xDelta / ((ovalPtr[2] + width - ovalPtr[0])/2.0),	    yDelta / ((ovalPtr[3] + width - ovalPtr[1])/2.0));    /*     * If the scaled distance is greater than 1 then it means no     * hit.  Compute the distance from the point to the edge of     * the circle, then scale this distance back to the original     * coordinate system.     *     * Note: this distance isn't completely accurate.  It's only     * an approximation, and it can overestimate the correct     * distance when the oval is eccentric.     */    if (scaledDistance > 1.0) {	return (distToCenter/scaledDistance) * (scaledDistance - 1.0);    }    /*     * Scaled distance less than 1 means the point is inside the     * outer edge of the oval.  If this is a filled oval, then we     * have a hit.  Otherwise, do the same computation as above     * (scale back to original coordinate system), but also check     * to see if the point is within the width of the outline.     */    if (filled) {	return 0.0;    }    if (scaledDistance > 1E-10) {	distToOutline = (distToCenter/scaledDistance) * (1.0 - scaledDistance)		- width;    } else {	/*	 * Avoid dividing by a very small number (it could cause an	 * arithmetic overflow).  This problem occurs if the point is	 * very close to the center of the oval.	 */	xDiam = ovalPtr[2] - ovalPtr[0];	yDiam = ovalPtr[3] - ovalPtr[1];	if (xDiam < yDiam) {	    distToOutline = (xDiam - width)/2;	} else {	    distToOutline = (yDiam - width)/2;	}    }    if (distToOutline < 0.0) {	return 0.0;    }    return distToOutline;}/* *-------------------------------------------------------------- * * TkOvalToArea -- * *	Determine whether an oval lies entirely inside, entirely *	outside, or overlapping a given rectangular area. * * Results: *	-1 is returned if the oval described by ovalPtr is entirely *	outside the rectangle given by rectPtr.  0 is returned if the *	oval overlaps the rectangle, and 1 is returned if the oval *	is entirely inside the rectangle. * * Side effects: *	None. * *-------------------------------------------------------------- */intTkOvalToArea(ovalPtr, rectPtr)    register double *ovalPtr;	/* Points to coordinates definining the				 * bounding rectangle for the oval: x1, y1,				 * x2, y2.  X1 must be less than x2 and y1				 * less than y2. */    register double *rectPtr;	/* Points to coords for rectangle, in the				 * order x1, y1, x2, y2.  X1 and y1 must				 * be lower-left corner. */{    double centerX, centerY, radX, radY, deltaX, deltaY;    /*     * First, see if oval is entirely inside rectangle or entirely     * outside rectangle.     */    if ((rectPtr[0] <= ovalPtr[0]) && (rectPtr[2] >= ovalPtr[2])	    && (rectPtr[1] <= ovalPtr[1]) && (rectPtr[3] >= ovalPtr[3])) {	return 1;    }    if ((rectPtr[2] < ovalPtr[0]) || (rectPtr[0] > ovalPtr[2])	    || (rectPtr[3] < ovalPtr[1]) || (rectPtr[1] > ovalPtr[3])) {	return -1;    }    /*     * Next, go through the rectangle side by side.  For each side     * of the rectangle, find the point on the side that is closest     * to the oval's center, and see if that point is inside the     * oval.  If at least one such point is inside the oval, then     * the rectangle intersects the oval.     */    centerX = (ovalPtr[0] + ovalPtr[2])/2;    centerY = (ovalPtr[1] + ovalPtr[3])/2;    radX = (ovalPtr[2] - ovalPtr[0])/2;    radY = (ovalPtr[3] - ovalPtr[1])/2;    deltaY = rectPtr[1] - centerY;    if (deltaY < 0.0) {	deltaY = centerY - rectPtr[3];	if (deltaY < 0.0) {	    deltaY = 0;	}    }    deltaY /= radY;    deltaY *= deltaY;    /*     * Left side:     */    deltaX = (rectPtr[0] - centerX)/radX;    deltaX *= deltaX;    if ((deltaX + deltaY) <= 1.0) {	return 0;    }    /*     * Right side:     */    deltaX = (rectPtr[2] - centerX)/radX;    deltaX *= deltaX;    if ((deltaX + deltaY) <= 1.0) {	return 0;    }    deltaX = rectPtr[0] - centerX;    if (deltaX < 0.0) {	deltaX = centerX - rectPtr[2];	if (deltaX < 0.0) {	    deltaX = 0;	}    }    deltaX /= radX;    deltaX *= deltaX;    /*     * Bottom side:     */    deltaY = (rectPtr[1] - centerY)/radY;    deltaY *= deltaY;    if ((deltaX + deltaY) < 1.0) {	return 0;    }    /*     * Top side:     */    deltaY = (rectPtr[3] - centerY)/radY;    deltaY *= deltaY;    if ((deltaX + deltaY) < 1.0) {	return 0;    }    return -1;}/* *-------------------------------------------------------------- * * TkIncludePoint -- * *	Given a point and a generic canvas item header, expand *	the item's bounding box if needed to include the point. * * Results: *	None. * * Side effects: *	The boudn. * *-------------------------------------------------------------- */	/* ARGSUSED */voidTkIncludePoint(itemPtr, pointPtr)    register Tk_Item *itemPtr;		/* Item whose bounding box is					 * being calculated. */    double *pointPtr;			/* Address of two doubles giving					 * x and y coordinates of point. */{    int tmp;    tmp = (int) (pointPtr[0] + 0.5);    if (tmp < itemPtr->x1) {	itemPtr->x1 = tmp;    }    if (tmp > itemPtr->x2) {	itemPtr->x2 = tmp;    }    tmp = (int) (pointPtr[1] + 0.5);    if (tmp < itemPtr->y1) {	itemPtr->y1 = tmp;    }    if (tmp > itemPtr->y2) {	itemPtr->y2 = tmp;    }}/* *-------------------------------------------------------------- * * TkBezierScreenPoints -- * *	Given four control points, create a larger set of XPoints *	for a Bezier spline based on the points. * * Results: *	The array at *xPointPtr gets filled in with numSteps XPoints *	corresponding to the Bezier spline defined by the four  *	control points.  Note:  no output point is generated for the *	first input point, but an output point *is* generated for *	the last input point. * * Side effects: *	None. * *-------------------------------------------------------------- */voidTkBezierScreenPoints(canvas, control, numSteps, xPointPtr)    Tk_Canvas canvas;			/* Canvas in which curve is to be					 * drawn. */    double control[];			/* Array of coordinates for four					 * control points:  x0, y0, x1, y1,					 * ... x3 y3. */    int numSteps;			/* Number of curve points to					 * generate.  */    register XPoint *xPointPtr;		/* Where to put new points. */{    int i;    double u, u2, u3, t, t2, t3;    for (i = 1; i <= numSteps; i++, xPointPtr++) {	t = ((double) i)/((double) numSteps);	t2 = t*t;	t3 = t2*t;	u = 1.0 - t;	u2 = u*u;	u3 = u2*u;	Tk_CanvasDrawableCoords(canvas,		(control[0]*u3 + 3.0 * (control[2]*t*u2 + control[4]*t2*u)		    + control[6]*t3),		(control[1]*u3 + 3.0 * (control[3]*t*u2 + control[5]*t2*u)		    + control[7]*t3),		&xPointPtr->x, &xPointPtr->y);    }}/* *-------------------------------------------------------------- * * TkBezierPoints -- * *	Given four control points, create a larger set of points *	for a Bezier spline based on the points. * * Results: *	The array at *coordPtr gets filled in with 2*numSteps *	coordinates, which correspond to the Bezier spline defined *	by the four control points.  Note:  no output point is *	generated for the first input point, but an output point *	*is* generated for the last input point. *

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲成人免费在线| 另类小说图片综合网| 日韩亚洲欧美一区二区三区| 国内精品久久久久影院一蜜桃| 国产精品久久久久精k8| 日韩免费高清av| 91久久香蕉国产日韩欧美9色| 久久国产尿小便嘘嘘尿| 一区二区三区不卡视频在线观看 | 最新久久zyz资源站| 欧美一区2区视频在线观看| 99久久婷婷国产精品综合| 美腿丝袜亚洲一区| 亚洲自拍都市欧美小说| 国产精品丝袜91| 欧美大片顶级少妇| 欧美日韩视频不卡| 一本久道久久综合中文字幕| 国产精品羞羞答答xxdd| 青草国产精品久久久久久| 洋洋av久久久久久久一区| 国产精品视频免费看| 2014亚洲片线观看视频免费| 9191久久久久久久久久久| 一本到高清视频免费精品| 成熟亚洲日本毛茸茸凸凹| 精品在线你懂的| 青青草国产成人99久久| 日韩国产成人精品| 亚洲小说春色综合另类电影| 中文字幕人成不卡一区| 中文字幕欧美激情一区| 欧美精品一区二区蜜臀亚洲| 91精品国产综合久久精品图片 | 亚洲综合在线免费观看| 国产精品美女视频| 欧美激情综合五月色丁香| 精品福利一区二区三区免费视频| 51精品秘密在线观看| 欧美精三区欧美精三区| 欧美美女一区二区在线观看| 欧美午夜电影网| 欧美亚洲日本一区| 欧美日韩国产一级片| 欧美精品第1页| 91精品国产免费| 日韩欧美高清一区| 精品精品国产高清a毛片牛牛| 91精品免费在线| 日韩欧美激情一区| 久久久久国产免费免费| 国产日韩欧美一区二区三区乱码| 久久夜色精品国产噜噜av| 久久精品亚洲国产奇米99| 国产欧美一区二区精品秋霞影院 | 99精品桃花视频在线观看| 99视频精品在线| 色视频一区二区| 在线日韩av片| 777亚洲妇女| 久久先锋影音av| 国产精品免费免费| 亚洲欧洲中文日韩久久av乱码| 一区二区三区欧美| 日韩av中文字幕一区二区三区| 麻豆国产一区二区| 国产成人aaa| 91污在线观看| 欧美肥胖老妇做爰| 久久精品亚洲麻豆av一区二区| 中文字幕欧美一区| 五月天网站亚洲| 国产在线观看一区二区| heyzo一本久久综合| 欧美日韩美女一区二区| 精品国产一区二区三区av性色 | 日韩毛片精品高清免费| 亚洲电影在线免费观看| 激情深爱一区二区| 成人国产精品免费观看视频| 夜夜嗨av一区二区三区网页| 色综合中文字幕国产| 色天使久久综合网天天| 视频一区中文字幕| 麻豆精品视频在线| 亚洲激情成人在线| 欧美日韩亚洲不卡| 成人免费看的视频| 成人va在线观看| 久久久久久久久免费| 欧美一级日韩免费不卡| 成人97人人超碰人人99| 日韩精品在线一区| 高清av一区二区| 日韩视频国产视频| 偷拍一区二区三区四区| 成人视屏免费看| bt7086福利一区国产| 蜜桃av噜噜一区| 欧美精三区欧美精三区| 色老汉一区二区三区| 日韩精品资源二区在线| 69精品人人人人| 欧美日韩性生活| 欧美日韩精品一区二区三区| 97精品久久久久中文字幕 | 欧美色倩网站大全免费| 成人av小说网| 一本到一区二区三区| www.在线欧美| 亚洲人成网站精品片在线观看| 亚洲图片欧美激情| 亚洲乱码日产精品bd| 激情欧美一区二区| 日韩欧美久久一区| 中文字幕久久午夜不卡| 美日韩黄色大片| 精一区二区三区| 看片网站欧美日韩| 99精品欧美一区二区三区综合在线| 成人福利在线看| 成人小视频在线观看| 成人18视频日本| 成人天堂资源www在线| 亚洲综合久久久| 国产肉丝袜一区二区| 国产一区在线不卡| 狠狠色狠狠色综合系列| 亚洲综合无码一区二区| 韩国三级在线一区| 国产精品久久久久久久岛一牛影视 | 国产激情视频一区二区在线观看| 中文字幕亚洲区| 成人动漫在线一区| 亚洲一级在线观看| 色94色欧美sute亚洲13| 亚洲欧美日韩国产成人精品影院| www.激情成人| 亚洲视频中文字幕| 一本到高清视频免费精品| 亚洲免费观看高清完整版在线观看熊| 欧美猛男超大videosgay| av电影在线观看完整版一区二区| 国产精品一区二区无线| 亚洲欧洲日韩av| 欧美亚洲国产一区二区三区va| 亚洲自拍都市欧美小说| 日韩视频国产视频| 99精品国产热久久91蜜凸| 亚洲午夜免费电影| 91精品国产色综合久久不卡电影| 国产成人免费视| 亚洲欧洲日本在线| 欧美图区在线视频| 亚洲不卡一区二区三区| 国产精品一区二区在线观看不卡 | 国产精品中文有码| 亚洲免费色视频| 精品污污网站免费看| 另类成人小视频在线| 国产女主播视频一区二区| 欧洲生活片亚洲生活在线观看| 欧美美女直播网站| 亚洲欧美aⅴ...| 亚洲国产精品精华液网站| 91精品一区二区三区在线观看| 国产伦精品一区二区三区视频青涩 | 欧美日韩在线不卡| 日韩和欧美的一区| 久久精品亚洲一区二区三区浴池 | 91亚洲永久精品| 激情文学综合丁香| 国产91精品一区二区麻豆网站| 亚洲精品免费视频| 亚洲成人自拍网| 国产精品一区二区在线观看网站| 色噜噜久久综合| 国产激情91久久精品导航 | 色噜噜夜夜夜综合网| 国产精品久久毛片a| 亚洲国产日韩在线一区模特 | 欧美日韩美少妇| 风间由美性色一区二区三区| 91免费精品国自产拍在线不卡| 欧美日韩免费电影| 亚洲精品在线三区| 亚洲久草在线视频| 免费在线观看精品| 26uuu另类欧美亚洲曰本| 欧美一区二区三区日韩视频| 精品国产电影一区二区| 国产精品伊人色| 亚洲成av人**亚洲成av**| 国产日韩欧美精品在线| 亚洲一区二区在线播放相泽 | 91视频观看视频| 6080yy午夜一二三区久久| 国产欧美1区2区3区| 自拍偷拍欧美激情| 国产综合成人久久大片91|