?? tktrig.c
字號:
} else { y = MIN(pPtr[3], pointPtr[1]); y = MAX(y, pPtr[1]); } } else if (pPtr[3] == pPtr[1]) { /* * Horizontal edge. */ y = pPtr[1]; if (pPtr[0] >= pPtr[2]) { x = MIN(pPtr[0], pointPtr[0]); x = MAX(x, pPtr[2]); if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[0]) && (pointPtr[0] >= pPtr[2])) { intersections++; } } else { x = MIN(pPtr[2], pointPtr[0]); x = MAX(x, pPtr[0]); if ((pointPtr[1] < y) && (pointPtr[0] < pPtr[2]) && (pointPtr[0] >= pPtr[0])) { intersections++; } } } else { double m1, b1, m2, b2; int lower; /* Non-zero means point below line. */ /* * The edge is neither horizontal nor vertical. Convert the * edge to a line equation of the form y = m1*x + b1. Then * compute a line perpendicular to this edge but passing * through the point, also in the form y = m2*x + b2. */ m1 = (pPtr[3] - pPtr[1])/(pPtr[2] - pPtr[0]); b1 = pPtr[1] - m1*pPtr[0]; m2 = -1.0/m1; b2 = pointPtr[1] - m2*pointPtr[0]; x = (b2 - b1)/(m1 - m2); y = m1*x + b1; if (pPtr[0] > pPtr[2]) { if (x > pPtr[0]) { x = pPtr[0]; y = pPtr[1]; } else if (x < pPtr[2]) { x = pPtr[2]; y = pPtr[3]; } } else { if (x > pPtr[2]) { x = pPtr[2]; y = pPtr[3]; } else if (x < pPtr[0]) { x = pPtr[0]; y = pPtr[1]; } } lower = (m1*pointPtr[0] + b1) > pointPtr[1]; if (lower && (pointPtr[0] >= MIN(pPtr[0], pPtr[2])) && (pointPtr[0] < MAX(pPtr[0], pPtr[2]))) { intersections++; } } /* * Compute the distance to the closest point, and see if that * is the best distance seen so far. */ dist = hypot(pointPtr[0] - x, pointPtr[1] - y); if (dist < bestDist) { bestDist = dist; } } /* * We've processed all of the points. If the number of intersections * is odd, the point is inside the polygon. */ if (intersections & 0x1) { return 0.0; } return bestDist;}/* *-------------------------------------------------------------- * * TkPolygonToArea -- * * Determine whether a polygon lies entirely inside, entirely * outside, or overlapping a given rectangular area. * * Results: * -1 is returned if the polygon given by polyPtr and numPoints * is entirely outside the rectangle given by rectPtr. 0 is * returned if the polygon overlaps the rectangle, and 1 is * returned if the polygon is entirely inside the rectangle. * * Side effects: * None. * *-------------------------------------------------------------- */intTkPolygonToArea(polyPtr, numPoints, rectPtr) double *polyPtr; /* Points to an array coordinates for * closed polygon: x0, y0, x1, y1, ... * The polygon may be self-intersecting. */ int numPoints; /* Total number of points at *polyPtr. */ register double *rectPtr; /* Points to coords for rectangle, in the * order x1, y1, x2, y2. X1 and y1 must * be lower-left corner. */{ int state; /* State of all edges seen so far (-1 means * outside, 1 means inside, won't ever be * 0). */ int count; register double *pPtr; /* * Iterate over all of the edges of the polygon and test them * against the rectangle. Can quit as soon as the state becomes * "intersecting". */ state = TkLineToArea(polyPtr, polyPtr+2, rectPtr); if (state == 0) { return 0; } for (pPtr = polyPtr+2, count = numPoints-1; count >= 2; pPtr += 2, count--) { if (TkLineToArea(pPtr, pPtr+2, rectPtr) != state) { return 0; } } /* * If all of the edges were inside the rectangle we're done. * If all of the edges were outside, then the rectangle could * still intersect the polygon (if it's entirely enclosed). * Call TkPolygonToPoint to figure this out. */ if (state == 1) { return 1; } if (TkPolygonToPoint(polyPtr, numPoints, rectPtr) == 0.0) { return 0; } return -1;}/* *-------------------------------------------------------------- * * TkOvalToPoint -- * * Computes the distance from a given point to a given * oval, in canvas units. * * Results: * The return value is 0 if the point given by *pointPtr is * inside the oval. If the point isn't inside the * oval then the return value is approximately the distance * from the point to the oval. If the oval is filled, then * anywhere in the interior is considered "inside"; if * the oval isn't filled, then "inside" means only the area * occupied by the outline. * * Side effects: * None. * *-------------------------------------------------------------- */ /* ARGSUSED */doubleTkOvalToPoint(ovalPtr, width, filled, pointPtr) double ovalPtr[4]; /* Pointer to array of four coordinates * (x1, y1, x2, y2) defining oval's bounding * box. */ double width; /* Width of outline for oval. */ int filled; /* Non-zero means oval should be treated as * filled; zero means only consider outline. */ double pointPtr[2]; /* Coordinates of point. */{ double xDelta, yDelta, scaledDistance, distToOutline, distToCenter; double xDiam, yDiam; /* * Compute the distance between the center of the oval and the * point in question, using a coordinate system where the oval * has been transformed to a circle with unit radius. */ xDelta = (pointPtr[0] - (ovalPtr[0] + ovalPtr[2])/2.0); yDelta = (pointPtr[1] - (ovalPtr[1] + ovalPtr[3])/2.0); distToCenter = hypot(xDelta, yDelta); scaledDistance = hypot(xDelta / ((ovalPtr[2] + width - ovalPtr[0])/2.0), yDelta / ((ovalPtr[3] + width - ovalPtr[1])/2.0)); /* * If the scaled distance is greater than 1 then it means no * hit. Compute the distance from the point to the edge of * the circle, then scale this distance back to the original * coordinate system. * * Note: this distance isn't completely accurate. It's only * an approximation, and it can overestimate the correct * distance when the oval is eccentric. */ if (scaledDistance > 1.0) { return (distToCenter/scaledDistance) * (scaledDistance - 1.0); } /* * Scaled distance less than 1 means the point is inside the * outer edge of the oval. If this is a filled oval, then we * have a hit. Otherwise, do the same computation as above * (scale back to original coordinate system), but also check * to see if the point is within the width of the outline. */ if (filled) { return 0.0; } if (scaledDistance > 1E-10) { distToOutline = (distToCenter/scaledDistance) * (1.0 - scaledDistance) - width; } else { /* * Avoid dividing by a very small number (it could cause an * arithmetic overflow). This problem occurs if the point is * very close to the center of the oval. */ xDiam = ovalPtr[2] - ovalPtr[0]; yDiam = ovalPtr[3] - ovalPtr[1]; if (xDiam < yDiam) { distToOutline = (xDiam - width)/2; } else { distToOutline = (yDiam - width)/2; } } if (distToOutline < 0.0) { return 0.0; } return distToOutline;}/* *-------------------------------------------------------------- * * TkOvalToArea -- * * Determine whether an oval lies entirely inside, entirely * outside, or overlapping a given rectangular area. * * Results: * -1 is returned if the oval described by ovalPtr is entirely * outside the rectangle given by rectPtr. 0 is returned if the * oval overlaps the rectangle, and 1 is returned if the oval * is entirely inside the rectangle. * * Side effects: * None. * *-------------------------------------------------------------- */intTkOvalToArea(ovalPtr, rectPtr) register double *ovalPtr; /* Points to coordinates definining the * bounding rectangle for the oval: x1, y1, * x2, y2. X1 must be less than x2 and y1 * less than y2. */ register double *rectPtr; /* Points to coords for rectangle, in the * order x1, y1, x2, y2. X1 and y1 must * be lower-left corner. */{ double centerX, centerY, radX, radY, deltaX, deltaY; /* * First, see if oval is entirely inside rectangle or entirely * outside rectangle. */ if ((rectPtr[0] <= ovalPtr[0]) && (rectPtr[2] >= ovalPtr[2]) && (rectPtr[1] <= ovalPtr[1]) && (rectPtr[3] >= ovalPtr[3])) { return 1; } if ((rectPtr[2] < ovalPtr[0]) || (rectPtr[0] > ovalPtr[2]) || (rectPtr[3] < ovalPtr[1]) || (rectPtr[1] > ovalPtr[3])) { return -1; } /* * Next, go through the rectangle side by side. For each side * of the rectangle, find the point on the side that is closest * to the oval's center, and see if that point is inside the * oval. If at least one such point is inside the oval, then * the rectangle intersects the oval. */ centerX = (ovalPtr[0] + ovalPtr[2])/2; centerY = (ovalPtr[1] + ovalPtr[3])/2; radX = (ovalPtr[2] - ovalPtr[0])/2; radY = (ovalPtr[3] - ovalPtr[1])/2; deltaY = rectPtr[1] - centerY; if (deltaY < 0.0) { deltaY = centerY - rectPtr[3]; if (deltaY < 0.0) { deltaY = 0; } } deltaY /= radY; deltaY *= deltaY; /* * Left side: */ deltaX = (rectPtr[0] - centerX)/radX; deltaX *= deltaX; if ((deltaX + deltaY) <= 1.0) { return 0; } /* * Right side: */ deltaX = (rectPtr[2] - centerX)/radX; deltaX *= deltaX; if ((deltaX + deltaY) <= 1.0) { return 0; } deltaX = rectPtr[0] - centerX; if (deltaX < 0.0) { deltaX = centerX - rectPtr[2]; if (deltaX < 0.0) { deltaX = 0; } } deltaX /= radX; deltaX *= deltaX; /* * Bottom side: */ deltaY = (rectPtr[1] - centerY)/radY; deltaY *= deltaY; if ((deltaX + deltaY) < 1.0) { return 0; } /* * Top side: */ deltaY = (rectPtr[3] - centerY)/radY; deltaY *= deltaY; if ((deltaX + deltaY) < 1.0) { return 0; } return -1;}/* *-------------------------------------------------------------- * * TkIncludePoint -- * * Given a point and a generic canvas item header, expand * the item's bounding box if needed to include the point. * * Results: * None. * * Side effects: * The boudn. * *-------------------------------------------------------------- */ /* ARGSUSED */voidTkIncludePoint(itemPtr, pointPtr) register Tk_Item *itemPtr; /* Item whose bounding box is * being calculated. */ double *pointPtr; /* Address of two doubles giving * x and y coordinates of point. */{ int tmp; tmp = (int) (pointPtr[0] + 0.5); if (tmp < itemPtr->x1) { itemPtr->x1 = tmp; } if (tmp > itemPtr->x2) { itemPtr->x2 = tmp; } tmp = (int) (pointPtr[1] + 0.5); if (tmp < itemPtr->y1) { itemPtr->y1 = tmp; } if (tmp > itemPtr->y2) { itemPtr->y2 = tmp; }}/* *-------------------------------------------------------------- * * TkBezierScreenPoints -- * * Given four control points, create a larger set of XPoints * for a Bezier spline based on the points. * * Results: * The array at *xPointPtr gets filled in with numSteps XPoints * corresponding to the Bezier spline defined by the four * control points. Note: no output point is generated for the * first input point, but an output point *is* generated for * the last input point. * * Side effects: * None. * *-------------------------------------------------------------- */voidTkBezierScreenPoints(canvas, control, numSteps, xPointPtr) Tk_Canvas canvas; /* Canvas in which curve is to be * drawn. */ double control[]; /* Array of coordinates for four * control points: x0, y0, x1, y1, * ... x3 y3. */ int numSteps; /* Number of curve points to * generate. */ register XPoint *xPointPtr; /* Where to put new points. */{ int i; double u, u2, u3, t, t2, t3; for (i = 1; i <= numSteps; i++, xPointPtr++) { t = ((double) i)/((double) numSteps); t2 = t*t; t3 = t2*t; u = 1.0 - t; u2 = u*u; u3 = u2*u; Tk_CanvasDrawableCoords(canvas, (control[0]*u3 + 3.0 * (control[2]*t*u2 + control[4]*t2*u) + control[6]*t3), (control[1]*u3 + 3.0 * (control[3]*t*u2 + control[5]*t2*u) + control[7]*t3), &xPointPtr->x, &xPointPtr->y); }}/* *-------------------------------------------------------------- * * TkBezierPoints -- * * Given four control points, create a larger set of points * for a Bezier spline based on the points. * * Results: * The array at *coordPtr gets filled in with 2*numSteps * coordinates, which correspond to the Bezier spline defined * by the four control points. Note: no output point is * generated for the first input point, but an output point * *is* generated for the last input point. *
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -