亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? svm_learn.c

?? 關(guān)于支持向量機(jī)的源代碼 包括算法和說(shuō)明
?? C
?? 第 1 頁(yè) / 共 5 頁(yè)
字號(hào):

  printf("Constructing %ld rank constraints...",totpair); fflush(stdout);
  docdiff=(DOC **)my_malloc(sizeof(DOC)*totpair);
  target=(double *)my_malloc(sizeof(double)*totpair); 
  greater=(long *)my_malloc(sizeof(long)*totpair); 
  lesser=(long *)my_malloc(sizeof(long)*totpair); 

  k=0;
  for(i=0;i<totdoc;i++) {
    for(j=i+1;j<totdoc;j++) {
      if(docs[i]->queryid == docs[j]->queryid) {
	cost=(docs[i]->costfactor+docs[j]->costfactor)/2.0;
	if(rankvalue[i] > rankvalue[j]) {
	  if(kernel_parm->kernel_type == LINEAR)
	    docdiff[k]=create_example(k,0,0,cost,
				      sub_ss(docs[i]->fvec,docs[j]->fvec));
	  else {
	    flow=copy_svector(docs[j]->fvec);
	    flow->factor=-1.0;
	    flow->next=NULL;
	    fhigh=copy_svector(docs[i]->fvec);
	    fhigh->factor=1.0;
	    fhigh->next=flow;
	    docdiff[k]=create_example(k,0,0,cost,fhigh);
	  }
	  target[k]=1;
	  greater[k]=i;
	  lesser[k]=j;
	  k++;
	}
	else if(rankvalue[i] < rankvalue[j]) {
	  if(kernel_parm->kernel_type == LINEAR)
	    docdiff[k]=create_example(k,0,0,cost,
				      sub_ss(docs[i]->fvec,docs[j]->fvec));
	  else {
	    flow=copy_svector(docs[j]->fvec);
	    flow->factor=-1.0;
	    flow->next=NULL;
	    fhigh=copy_svector(docs[i]->fvec);
	    fhigh->factor=1.0;
	    fhigh->next=flow;
	    docdiff[k]=create_example(k,0,0,cost,fhigh);
	  }
	  target[k]=-1;
	  greater[k]=i;
	  lesser[k]=j;
	  k++;
	}
      }
    }
  }
  printf("done.\n"); fflush(stdout);

  /* need to get a bigger kernel cache */
  if(*kernel_cache) {
    kernel_cache_size=(*kernel_cache)->buffsize*sizeof(CFLOAT)/(1024*1024);
    kernel_cache_cleanup(*kernel_cache);
    (*kernel_cache)=kernel_cache_init(totpair,kernel_cache_size);
  }

  /* must use unbiased hyperplane on difference vectors */
  learn_parm->biased_hyperplane=0;
  pairmodel=(MODEL *)my_malloc(sizeof(MODEL));
  svm_learn_classification(docdiff,target,totpair,totwords,learn_parm,
			   kernel_parm,(*kernel_cache),pairmodel,NULL);

  /* Transfer the result into a more compact model. If you would like
     to output the original model on pairs of documents, see below. */
  alpha=(double *)my_malloc(sizeof(double)*totdoc); 
  for(i=0;i<totdoc;i++) {
    alpha[i]=0;
  }
  for(i=1;i<pairmodel->sv_num;i++) {
    alpha[lesser[(pairmodel->supvec[i])->docnum]]-=pairmodel->alpha[i];
    alpha[greater[(pairmodel->supvec[i])->docnum]]+=pairmodel->alpha[i];
  }
  model->supvec = (DOC **)my_malloc(sizeof(DOC *)*(totdoc+2));
  model->alpha = (double *)my_malloc(sizeof(double)*(totdoc+2));
  model->index = (long *)my_malloc(sizeof(long)*(totdoc+2));
  model->supvec[0]=0;  /* element 0 reserved and empty for now */
  model->alpha[0]=0;
  model->sv_num=1;
  for(i=0;i<totdoc;i++) {
    if(alpha[i]) {
      model->supvec[model->sv_num]=docs[i];
      model->alpha[model->sv_num]=alpha[i];
      model->index[i]=model->sv_num;
      model->sv_num++;
    }
    else {
      model->index[i]=-1;
    }
  }
  model->at_upper_bound=0;
  model->b=0;	       
  model->lin_weights=NULL;
  model->totwords=totwords;
  model->totdoc=totdoc;
  model->kernel_parm=(*kernel_parm);
  model->loo_error=-1;
  model->loo_recall=-1;
  model->loo_precision=-1;
  model->xa_error=-1;
  model->xa_recall=-1;
  model->xa_precision=-1;

  free(alpha);
  free(greater);
  free(lesser);
  free(target);

  /* If you would like to output the original model on pairs of
     document, replace the following lines with '(*model)=(*pairmodel);' */
  for(i=0;i<totpair;i++)
    free_example(docdiff[i],1);
  free(docdiff);
  free_model(pairmodel,0);
}


/* The following solves a freely defined and given set of
   inequalities. The optimization problem is of the following form:

   min 0.5 w*w + C sum_i C_i \xi_i
   s.t. x_i * w > rhs_i - \xi_i

   This corresponds to the -z o option. */

void svm_learn_optimization(DOC **docs, double *rhs, long int
			    totdoc, long int totwords, 
			    LEARN_PARM *learn_parm, 
			    KERNEL_PARM *kernel_parm, 
			    KERNEL_CACHE *kernel_cache, MODEL *model,
			    double *alpha)
     /* docs:        Left-hand side of inequalities (x-part) */
     /* rhs:         Right-hand side of inequalities */
     /* totdoc:      Number of examples in docs/label */
     /* totwords:    Number of features (i.e. highest feature index) */
     /* learn_parm:  Learning paramenters */
     /* kernel_parm: Kernel paramenters */
     /* kernel_cache:Initialized Cache of size 1*totdoc, if using a kernel. 
                     NULL if linear.*/
     /* model:       Returns solution as SV expansion (assumed empty before called) */
     /* alpha:       Start values for the alpha variables or NULL
	             pointer. The new alpha values are returned after 
		     optimization if not NULL. Array must be of size totdoc. */
{
  long i,*label;
  long misclassified,upsupvecnum;
  double loss,model_length,example_length;
  double maxdiff,*lin,*a,*c;
  long runtime_start,runtime_end;
  long iterations,maxslackid,svsetnum;
  long *unlabeled,*inconsistent;
  double r_delta_sq=0,r_delta,r_delta_avg;
  long *index,*index2dnum;
  double *weights,*slack,*alphaslack;
  CFLOAT *aicache;  /* buffer to keep one row of hessian */

  TIMING timing_profile;
  SHRINK_STATE shrink_state;

  runtime_start=get_runtime();
  timing_profile.time_kernel=0;
  timing_profile.time_opti=0;
  timing_profile.time_shrink=0;
  timing_profile.time_update=0;
  timing_profile.time_model=0;
  timing_profile.time_check=0;
  timing_profile.time_select=0;
  kernel_cache_statistic=0;

  learn_parm->totwords=totwords;

  /* make sure -n value is reasonable */
  if((learn_parm->svm_newvarsinqp < 2) 
     || (learn_parm->svm_newvarsinqp > learn_parm->svm_maxqpsize)) {
    learn_parm->svm_newvarsinqp=learn_parm->svm_maxqpsize;
  }

  init_shrink_state(&shrink_state,totdoc,(long)MAXSHRINK);

  label = (long *)my_malloc(sizeof(long)*totdoc);
  unlabeled = (long *)my_malloc(sizeof(long)*totdoc);
  inconsistent = (long *)my_malloc(sizeof(long)*totdoc);
  c = (double *)my_malloc(sizeof(double)*totdoc);
  a = (double *)my_malloc(sizeof(double)*totdoc);
  lin = (double *)my_malloc(sizeof(double)*totdoc);
  learn_parm->svm_cost = (double *)my_malloc(sizeof(double)*totdoc);
  model->supvec = (DOC **)my_malloc(sizeof(DOC *)*(totdoc+2));
  model->alpha = (double *)my_malloc(sizeof(double)*(totdoc+2));
  model->index = (long *)my_malloc(sizeof(long)*(totdoc+2));

  model->at_upper_bound=0;
  model->b=0;	       
  model->supvec[0]=0;  /* element 0 reserved and empty for now */
  model->alpha[0]=0;
  model->lin_weights=NULL;
  model->totwords=totwords;
  model->totdoc=totdoc;
  model->kernel_parm=(*kernel_parm);
  model->sv_num=1;
  model->loo_error=-1;
  model->loo_recall=-1;
  model->loo_precision=-1;
  model->xa_error=-1;
  model->xa_recall=-1;
  model->xa_precision=-1;

  r_delta=estimate_r_delta(docs,totdoc,kernel_parm);
  r_delta_sq=r_delta*r_delta;

  r_delta_avg=estimate_r_delta_average(docs,totdoc,kernel_parm);
  if(learn_parm->svm_c == 0.0) {  /* default value for C */
    learn_parm->svm_c=1.0/(r_delta_avg*r_delta_avg);
    if(verbosity>=1) 
      printf("Setting default regularization parameter C=%.4f\n",
	     learn_parm->svm_c);
  }

  learn_parm->biased_hyperplane=0; /* learn an unbiased hyperplane */

  learn_parm->eps=0.0;      /* No margin, unless explicitly handcoded
                               in the right-hand side in the training
                               set.  */

  for(i=0;i<totdoc;i++) {    /* various inits */
    docs[i]->docnum=i;
    a[i]=0;
    lin[i]=0;
    c[i]=rhs[i];       /* set right-hand side */
    unlabeled[i]=0;
    inconsistent[i]=0;
    learn_parm->svm_cost[i]=learn_parm->svm_c*learn_parm->svm_costratio*
      docs[i]->costfactor;
    label[i]=1;
  }
  if(learn_parm->sharedslack) /* if shared slacks are used, they must */
    for(i=0;i<totdoc;i++)     /*  be used on every constraint */
      if(!docs[i]->slackid) {
	perror("Error: Missing shared slacks definitions in some of the examples.");
	exit(0);
      }
      
  /* compute starting state for initial alpha values */
  if(alpha) {
    if(verbosity>=1) {
      printf("Computing starting state..."); fflush(stdout);
    }
    index = (long *)my_malloc(sizeof(long)*totdoc);
    index2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));
    weights=(double *)my_malloc(sizeof(double)*(totwords+1));
    aicache = (CFLOAT *)my_malloc(sizeof(CFLOAT)*totdoc);
    for(i=0;i<totdoc;i++) {    /* create full index and clip alphas */
      index[i]=1;
      alpha[i]=fabs(alpha[i]);
      if(alpha[i]<0) alpha[i]=0;
      if(alpha[i]>learn_parm->svm_cost[i]) alpha[i]=learn_parm->svm_cost[i];
    }
    if(kernel_parm->kernel_type != LINEAR) {
      for(i=0;i<totdoc;i++)     /* fill kernel cache with unbounded SV */
	if((alpha[i]>0) && (alpha[i]<learn_parm->svm_cost[i]) 
	   && (kernel_cache_space_available(kernel_cache))) 
	  cache_kernel_row(kernel_cache,docs,i,kernel_parm);
      for(i=0;i<totdoc;i++)     /* fill rest of kernel cache with bounded SV */
	if((alpha[i]==learn_parm->svm_cost[i]) 
	   && (kernel_cache_space_available(kernel_cache))) 
	  cache_kernel_row(kernel_cache,docs,i,kernel_parm);
    }
    (void)compute_index(index,totdoc,index2dnum);
    update_linear_component(docs,label,index2dnum,alpha,a,index2dnum,totdoc,
			    totwords,kernel_parm,kernel_cache,lin,aicache,
			    weights);
    (void)calculate_svm_model(docs,label,unlabeled,lin,alpha,a,c,
			      learn_parm,index2dnum,index2dnum,model);
    for(i=0;i<totdoc;i++) {    /* copy initial alphas */
      a[i]=alpha[i];
    }
    free(index);
    free(index2dnum);
    free(weights);
    free(aicache);
    if(verbosity>=1) {
      printf("done.\n");  fflush(stdout);
    }   
  } 

  /* removing inconsistent does not work for general optimization problem */
  if(learn_parm->remove_inconsistent) {	  
    learn_parm->remove_inconsistent = 0;
    printf("'remove inconsistent' not available in this mode. Switching option off!"); fflush(stdout);
  }

  /* caching makes no sense for linear kernel */
  if(kernel_parm->kernel_type == LINEAR) {
    kernel_cache = NULL;   
  } 

  if(verbosity==1) {
    printf("Optimizing"); fflush(stdout);
  }

  /* train the svm */
  if(learn_parm->sharedslack)
    iterations=optimize_to_convergence_sharedslack(docs,label,totdoc,
				     totwords,learn_parm,kernel_parm,
				     kernel_cache,&shrink_state,model,
				     a,lin,c,&timing_profile,
				     &maxdiff);
  else
    iterations=optimize_to_convergence(docs,label,totdoc,
				     totwords,learn_parm,kernel_parm,
				     kernel_cache,&shrink_state,model,
				     inconsistent,unlabeled,
				     a,lin,c,&timing_profile,
				     &maxdiff,(long)-1,(long)1);
  
  if(verbosity>=1) {
    if(verbosity==1) printf("done. (%ld iterations)\n",iterations);

    misclassified=0;
    for(i=0;(i<totdoc);i++) { /* get final statistic */
      if((lin[i]-model->b)*(double)label[i] <= 0.0) 
	misclassified++;
    }

    printf("Optimization finished (maxdiff=%.5f).\n",maxdiff); 

    runtime_end=get_runtime();
    if(verbosity>=2) {
      printf("Runtime in cpu-seconds: %.2f (%.2f%% for kernel/%.2f%% for optimizer/%.2f%% for final/%.2f%% for update/%.2f%% for model/%.2f%% for check/%.2f%% for select)\n",
        ((float)runtime_end-(float)runtime_start)/100.0,
        (100.0*timing_profile.time_kernel)/(float)(runtime_end-runtime_start),
	(100.0*timing_profile.time_opti)/(float)(runtime_end-runtime_start),
	(100.0*timing_profile.time_shrink)/(float)(runtime_end-runtime_start),
        (100.0*timing_profile.time_update)/(float)(runtime_end-runtime_start),
        (100.0*timing_profile.time_model)/(float)(runtime_end-runtime_start),
        (100.0*timing_profile.time_check)/(float)(runtime_end-runtime_start),
        (100.0*timing_profile.time_select)/(float)(runtime_end-runtime_start));
    }
    else {
      printf("Runtime in cpu-seconds: %.2f\n",
	     (runtime_end-runtime_start)/100.0);
    }
  }
  if((verbosity>=1) && (!learn_parm->skip_final_opt_check)) {
    loss=0;
    model_length=0; 
    for(i=0;i<totdoc;i++) {
      if((lin[i]-model->b)*(double)label[i] < c[i]-learn_parm->epsilon_crit)
	loss+=c[i]-(lin[i]-model->b)*(double)label[i];
      model_length+=a[i]*label[i]*lin[i];
    }
    model_length=sqrt(model_length);
    fprintf(stdout,"Norm of weight vector: |w|=%.5f\n",model_length);
  }
  
  if(learn_parm->sharedslack) {
    index = (long *)my_malloc(sizeof(long)*totdoc);
    index2dnum = (long *)my_malloc(sizeof(long)*(totdoc+11));
    maxslackid=0;
    for(i=0;i<totdoc;i++) {    /* create full index */
      index[i]=1;
      if(maxslackid<docs[i]->slackid)
	maxslackid=docs[i]->slackid;
    }

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩精品一区二区三区四区| 欧美一二三四区在线| 首页国产丝袜综合| 日本一区二区三区四区| 欧美精品成人一区二区三区四区| 国产高清亚洲一区| 天天射综合影视| 亚洲桃色在线一区| 337p粉嫩大胆色噜噜噜噜亚洲 | 91九色最新地址| 国内欧美视频一区二区| 亚洲午夜久久久久久久久电影院| 久久婷婷综合激情| 宅男噜噜噜66一区二区66| 91在线精品秘密一区二区| 国产精品资源网| 久久机这里只有精品| 午夜精品福利久久久| 国产精品嫩草影院com| 精品免费视频.| 欧美一区二区日韩| 欧美日韩一区在线观看| 91首页免费视频| 成人午夜又粗又硬又大| 国产精品一区一区三区| 免费黄网站欧美| 天天av天天翘天天综合网| 亚洲精品国产精华液| 国产精品女上位| 国产精品久久久久久亚洲毛片| 精品少妇一区二区三区视频免付费| 精品视频在线免费观看| 欧美曰成人黄网| 欧美天堂亚洲电影院在线播放| 99久久er热在这里只有精品15 | 91在线无精精品入口| 丁香桃色午夜亚洲一区二区三区| 国产伦精品一区二区三区视频青涩| 日韩成人一区二区三区在线观看| 日韩国产欧美视频| 日韩经典中文字幕一区| 视频一区二区三区入口| 男人的天堂久久精品| 日韩va亚洲va欧美va久久| 日本sm残虐另类| 麻豆久久久久久久| 国产酒店精品激情| 国产69精品久久777的优势| 国产福利一区二区三区视频 | 91.com视频| 在线观看日韩精品| 欧美三级日韩三级| 欧美色爱综合网| 欧美视频日韩视频在线观看| 欧美日韩你懂的| 欧美日韩高清不卡| 欧美区一区二区三区| 欧美一区二区在线观看| 91精品国产日韩91久久久久久| 欧美高清dvd| 欧美大片顶级少妇| 欧美一区二区三区喷汁尤物| 精品福利一区二区三区免费视频| 欧美一二三区在线观看| 精品精品国产高清a毛片牛牛| 欧美一区二视频| 精品不卡在线视频| 久久久久亚洲蜜桃| 国产精品久久三| 亚洲综合丁香婷婷六月香| 亚洲大片免费看| 蜜桃av一区二区| 精油按摩中文字幕久久| av在线这里只有精品| 在线影视一区二区三区| 91麻豆精品国产自产在线观看一区 | 久久亚洲春色中文字幕久久久| 国产亚洲精品资源在线26u| 国产精品久久久久永久免费观看| 亚洲天堂网中文字| 亚洲v精品v日韩v欧美v专区| 久久精品国产免费看久久精品| 国产成人超碰人人澡人人澡| 国产乱码精品一品二品| av成人老司机| 在线91免费看| 国产欧美综合在线观看第十页| 国产欧美一区二区在线观看| 亚洲欧美另类久久久精品| 亚洲r级在线视频| 国产精品资源网站| 日本高清视频一区二区| 欧美一级二级在线观看| 日本一区二区三区电影| 一区二区三区国产精华| 激情小说亚洲一区| 日本韩国一区二区| 91 com成人网| 亚洲与欧洲av电影| 国产高清不卡一区| 欧美老肥妇做.爰bbww| 国产亚洲欧洲一区高清在线观看| 亚洲一区电影777| 国产毛片一区二区| 成人av网站免费| 欧美一区二区三区四区视频| 中文字幕一区二区三区不卡在线 | 在线精品国精品国产尤物884a| 日韩一级大片在线观看| 中文字幕亚洲一区二区va在线| 日本中文一区二区三区| 91蜜桃在线免费视频| 精品日产卡一卡二卡麻豆| 久久精品视频在线看| 亚洲成人在线网站| 国产福利一区二区三区视频在线| 91精品国产一区二区人妖| 国产精品久久久久久久蜜臀| 久久精品久久99精品久久| 91成人看片片| 成人免费在线视频观看| 精品在线一区二区三区| 在线不卡欧美精品一区二区三区| 国产精品久久99| 国产精品一区二区三区乱码 | 在线观看免费一区| 国产欧美一区二区精品性色 | 91丨porny丨首页| 久久久久久久精| 亚洲午夜三级在线| 成人动漫中文字幕| 久久综合久久99| 蜜臀av国产精品久久久久| 欧美日精品一区视频| 亚洲图片欧美激情| 免费人成在线不卡| 精品国产人成亚洲区| 日韩高清在线一区| 91精品在线观看入口| 亚洲尤物在线视频观看| 91亚洲精品一区二区乱码| 国产欧美一区二区在线观看| 国产精品一区二区在线观看不卡| 精品欧美乱码久久久久久1区2区| 日本在线不卡一区| 6080日韩午夜伦伦午夜伦| 亚洲免费资源在线播放| av毛片久久久久**hd| 一区在线中文字幕| 成人app在线| 亚洲男人的天堂一区二区| 色婷婷久久久亚洲一区二区三区| 亚洲视频网在线直播| 91在线你懂得| 亚洲综合色丁香婷婷六月图片| 成人av片在线观看| 国产精品嫩草影院av蜜臀| 波多野结衣一区二区三区 | 亚洲欧洲日本在线| 成人激情图片网| 成人欧美一区二区三区视频网页 | 日韩欧美一区中文| 久久精品国产99国产| 国产清纯美女被跳蛋高潮一区二区久久w | 精品国产污污免费网站入口| 国产精品一区二区久久不卡| 国产精品你懂的在线欣赏| 99久久99久久精品免费看蜜桃| 亚洲精品你懂的| 欧美群妇大交群的观看方式| 日韩av一区二区三区四区| 精品少妇一区二区三区在线播放 | 欧美日韩精品欧美日韩精品一 | 国产成人综合亚洲91猫咪| 中文字幕精品在线不卡| 91成人在线精品| 亚洲一区二区欧美| 日韩美女天天操| 大白屁股一区二区视频| 亚洲男人都懂的| 制服.丝袜.亚洲.另类.中文| 国产一区二区看久久| 亚洲男人的天堂网| 欧美一区二视频| 99国产欧美另类久久久精品| 一区二区三区国产| 日韩一区二区在线观看| 成人h动漫精品一区二| 亚洲综合久久av| 26uuu国产电影一区二区| 91一区一区三区| 美女视频黄频大全不卡视频在线播放| 久久久国产精品麻豆| 91黄视频在线| 奇米色一区二区三区四区| 亚洲色图欧美激情| 欧美一级免费观看| eeuss影院一区二区三区| 亚洲成年人网站在线观看| 国产亚洲福利社区一区|