亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? svm_learn_main.c

?? 關于支持向量機的源代碼 包括算法和說明
?? C
?? 第 1 頁 / 共 2 頁
字號:
    learn_parm->type=CLASSIFICATION;
  }
  else if(strcmp(type,"r")==0) {
    learn_parm->type=REGRESSION;
  }
  else if(strcmp(type,"p")==0) {
    learn_parm->type=RANKING;
  }
  else if(strcmp(type,"o")==0) {
    learn_parm->type=OPTIMIZATION;
  }
  else if(strcmp(type,"s")==0) {
    learn_parm->type=OPTIMIZATION;
    learn_parm->sharedslack=1;
  }
  else {
    printf("\nUnknown type '%s': Valid types are 'c' (classification), 'r' regession, and 'p' preference ranking.\n",type);
    wait_any_key();
    print_help();
    exit(0);
  }    
  if((learn_parm->skip_final_opt_check) 
     && (kernel_parm->kernel_type == LINEAR)) {
    printf("\nIt does not make sense to skip the final optimality check for linear kernels.\n\n");
    learn_parm->skip_final_opt_check=0;
  }    
  if((learn_parm->skip_final_opt_check) 
     && (learn_parm->remove_inconsistent)) {
    printf("\nIt is necessary to do the final optimality check when removing inconsistent \nexamples.\n");
    wait_any_key();
    print_help();
    exit(0);
  }    
  if((learn_parm->svm_maxqpsize<2)) {
    printf("\nMaximum size of QP-subproblems not in valid range: %ld [2..]\n",learn_parm->svm_maxqpsize); 
    wait_any_key();
    print_help();
    exit(0);
  }
  if((learn_parm->svm_maxqpsize<learn_parm->svm_newvarsinqp)) {
    printf("\nMaximum size of QP-subproblems [%ld] must be larger than the number of\n",learn_parm->svm_maxqpsize); 
    printf("new variables [%ld] entering the working set in each iteration.\n",learn_parm->svm_newvarsinqp); 
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->svm_iter_to_shrink<1) {
    printf("\nMaximum number of iterations for shrinking not in valid range: %ld [1,..]\n",learn_parm->svm_iter_to_shrink);
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->svm_c<0) {
    printf("\nThe C parameter must be greater than zero!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->transduction_posratio>1) {
    printf("\nThe fraction of unlabeled examples to classify as positives must\n");
    printf("be less than 1.0 !!!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->svm_costratio<=0) {
    printf("\nThe COSTRATIO parameter must be greater than zero!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->epsilon_crit<=0) {
    printf("\nThe epsilon parameter must be greater than zero!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if(learn_parm->rho<0) {
    printf("\nThe parameter rho for xi/alpha-estimates and leave-one-out pruning must\n");
    printf("be greater than zero (typically 1.0 or 2.0, see T. Joachims, Estimating the\n");
    printf("Generalization Performance of an SVM Efficiently, ICML, 2000.)!\n\n");
    wait_any_key();
    print_help();
    exit(0);
  }
  if((learn_parm->xa_depth<0) || (learn_parm->xa_depth>100)) {
    printf("\nThe parameter depth for ext. xi/alpha-estimates must be in [0..100] (zero\n");
    printf("for switching to the conventional xa/estimates described in T. Joachims,\n");
    printf("Estimating the Generalization Performance of an SVM Efficiently, ICML, 2000.)\n");
    wait_any_key();
    print_help();
    exit(0);
  }
}

void wait_any_key()
{
  printf("\n(more)\n");
  (void)getc(stdin);
}

void print_help()
{
  printf("\nSVM-light %s: Support Vector Machine, learning module     %s\n",VERSION,VERSION_DATE);
  copyright_notice();
  printf("   usage: svm_learn [options] example_file model_file\n\n");
  printf("Arguments:\n");
  printf("         example_file-> file with training data\n");
  printf("         model_file  -> file to store learned decision rule in\n");

  printf("General options:\n");
  printf("         -?          -> this help\n");
  printf("         -v [0..3]   -> verbosity level (default 1)\n");
  printf("Learning options:\n");
  printf("         -z {c,r,p}  -> select between classification (c), regression (r),\n");
  printf("                        and preference ranking (p) (default classification)\n");
  printf("         -c float    -> C: trade-off between training error\n");
  printf("                        and margin (default [avg. x*x]^-1)\n");
  printf("         -w [0..]    -> epsilon width of tube for regression\n");
  printf("                        (default 0.1)\n");
  printf("         -j float    -> Cost: cost-factor, by which training errors on\n");
  printf("                        positive examples outweight errors on negative\n");
  printf("                        examples (default 1) (see [4])\n");
  printf("         -b [0,1]    -> use biased hyperplane (i.e. x*w+b>0) instead\n");
  printf("                        of unbiased hyperplane (i.e. x*w>0) (default 1)\n");
  printf("         -i [0,1]    -> remove inconsistent training examples\n");
  printf("                        and retrain (default 0)\n");
  printf("Performance estimation options:\n");
  printf("         -x [0,1]    -> compute leave-one-out estimates (default 0)\n");
  printf("                        (see [5])\n");
  printf("         -o ]0..2]   -> value of rho for XiAlpha-estimator and for pruning\n");
  printf("                        leave-one-out computation (default 1.0) (see [2])\n");
  printf("         -k [0..100] -> search depth for extended XiAlpha-estimator \n");
  printf("                        (default 0)\n");
  printf("Transduction options (see [3]):\n");
  printf("         -p [0..1]   -> fraction of unlabeled examples to be classified\n");
  printf("                        into the positive class (default is the ratio of\n");
  printf("                        positive and negative examples in the training data)\n");
  printf("Kernel options:\n");
  printf("         -t int      -> type of kernel function:\n");
  printf("                        0: linear (default)\n");
  printf("                        1: polynomial (s a*b+c)^d\n");
  printf("                        2: radial basis function exp(-gamma ||a-b||^2)\n");
  printf("                        3: sigmoid tanh(s a*b + c)\n");
  printf("                        4: user defined kernel from kernel.h\n");
  printf("         -d int      -> parameter d in polynomial kernel\n");
  printf("         -g float    -> parameter gamma in rbf kernel\n");
  printf("         -s float    -> parameter s in sigmoid/poly kernel\n");
  printf("         -r float    -> parameter c in sigmoid/poly kernel\n");
  printf("         -u string   -> parameter of user defined kernel\n");
  printf("Optimization options (see [1]):\n");
  printf("         -q [2..]    -> maximum size of QP-subproblems (default 10)\n");
  printf("         -n [2..q]   -> number of new variables entering the working set\n");
  printf("                        in each iteration (default n = q). Set n<q to prevent\n");
  printf("                        zig-zagging.\n");
  printf("         -m [5..]    -> size of cache for kernel evaluations in MB (default 40)\n");
  printf("                        The larger the faster...\n");
  printf("         -e float    -> eps: Allow that error for termination criterion\n");
  printf("                        [y [w*x+b] - 1] >= eps (default 0.001)\n");
  printf("         -y [0,1]    -> restart the optimization from alpha values in file\n");
  printf("                        specified by -a option. (default 0)\n");
  printf("         -h [5..]    -> number of iterations a variable needs to be\n"); 
  printf("                        optimal before considered for shrinking (default 100)\n");
  printf("         -f [0,1]    -> do final optimality check for variables removed\n");
  printf("                        by shrinking. Although this test is usually \n");
  printf("                        positive, there is no guarantee that the optimum\n");
  printf("                        was found if the test is omitted. (default 1)\n");
  printf("         -y string   -> if option is given, reads alphas from file with given\n");
  printf("                        and uses them as starting point. (default 'disabled')\n");
  printf("         -# int      -> terminate optimization, if no progress after this\n");
  printf("                        number of iterations. (default 100000)\n");
  printf("Output options:\n");
  printf("         -l string   -> file to write predicted labels of unlabeled\n");
  printf("                        examples into after transductive learning\n");
  printf("         -a string   -> write all alphas to this file after learning\n");
  printf("                        (in the same order as in the training set)\n");
  wait_any_key();
  printf("\nMore details in:\n");
  printf("[1] T. Joachims, Making Large-Scale SVM Learning Practical. Advances in\n");
  printf("    Kernel Methods - Support Vector Learning, B. Sch鰈kopf and C. Burges and\n");
  printf("    A. Smola (ed.), MIT Press, 1999.\n");
  printf("[2] T. Joachims, Estimating the Generalization performance of an SVM\n");
  printf("    Efficiently. International Conference on Machine Learning (ICML), 2000.\n");
  printf("[3] T. Joachims, Transductive Inference for Text Classification using Support\n");
  printf("    Vector Machines. International Conference on Machine Learning (ICML),\n");
  printf("    1999.\n");
  printf("[4] K. Morik, P. Brockhausen, and T. Joachims, Combining statistical learning\n");
  printf("    with a knowledge-based approach - A case study in intensive care  \n");
  printf("    monitoring. International Conference on Machine Learning (ICML), 1999.\n");
  printf("[5] T. Joachims, Learning to Classify Text Using Support Vector\n");
  printf("    Machines: Methods, Theory, and Algorithms. Dissertation, Kluwer,\n");
  printf("    2002.\n\n");
}


?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩极品在线观看一区| 亚洲国产精品一区二区久久 | 日韩免费在线观看| 日韩一区中文字幕| 成人国产精品视频| 国产人久久人人人人爽| 韩国视频一区二区| 欧美电影精品一区二区| 免费一级片91| 欧美成人午夜电影| 久久精品72免费观看| 日韩一区二区在线播放| 日精品一区二区| 久久色成人在线| 成人avav在线| 亚洲成人av福利| 日韩欧美视频在线| 国产91在线观看| 日韩电影在线观看电影| 日本一区二区三区高清不卡| 99视频一区二区三区| 日韩av网站在线观看| 欧美精品乱人伦久久久久久| 国产在线观看一区二区 | 色呦呦国产精品| 日本亚洲一区二区| 国产亚洲精品bt天堂精选| 成人久久18免费网站麻豆| 精品制服美女久久| 亚洲高清不卡在线| 国产午夜精品福利| 欧美一区二区在线视频| 国产成人自拍在线| 偷拍一区二区三区四区| 国产嫩草影院久久久久| 777奇米四色成人影色区| 不卡视频免费播放| 狠狠色狠狠色综合| 日韩专区一卡二卡| 亚洲地区一二三色| 污片在线观看一区二区| 一区二区三区在线影院| 亚洲已满18点击进入久久| 久久久精品免费免费| 91精品欧美久久久久久动漫 | 精品中文av资源站在线观看| 亚洲国产日韩a在线播放| 亚洲欧美一区二区不卡| 亚洲色图.com| 亚洲天堂福利av| 亚洲欧洲制服丝袜| 国产美女一区二区| 国产999精品久久| 99re8在线精品视频免费播放| 黄一区二区三区| 国产精品一色哟哟哟| 国产99久久久国产精品潘金 | 蜜臀a∨国产成人精品| 肉肉av福利一精品导航| 亚洲va国产va欧美va观看| 亚洲一区二区三区精品在线| 亚洲国产毛片aaaaa无费看| 婷婷丁香久久五月婷婷| 久久www免费人成看片高清| 久久国产免费看| 国产成人av影院| 91黄色免费网站| 欧美精品一区视频| 日韩av一级电影| 精品视频在线看| 一区二区三区.www| 成人激情图片网| 欧美丰满高潮xxxx喷水动漫| 欧美国产日本韩| 蜜桃精品视频在线| 欧美三区在线观看| 1000精品久久久久久久久| 免费观看日韩av| 色婷婷久久久亚洲一区二区三区 | 亚洲九九爱视频| 久久av老司机精品网站导航| 欧美亚洲国产bt| 亚洲一卡二卡三卡四卡| 99久久精品免费看| 国产精品美女久久久久久久久| 日韩在线观看一区二区| 色噜噜夜夜夜综合网| 国产欧美一区二区精品性色| 日本va欧美va精品| 欧美精品在线一区二区三区| 日韩精品电影一区亚洲| 色哟哟欧美精品| 亚洲国产成人av好男人在线观看| 一本久久a久久精品亚洲| 精品欧美一区二区在线观看 | 3d动漫精品啪啪一区二区竹菊| 亚洲主播在线播放| 欧美性生活久久| 日本成人超碰在线观看| 欧美欧美欧美欧美首页| 麻豆免费精品视频| 国产黄色精品网站| 亚洲欧美日韩系列| 欧美一区二区三区免费在线看 | 亚洲成人av电影在线| 91精品国产综合久久久久| 亚洲一区二区三区四区的| 色婷婷亚洲综合| 国产剧情av麻豆香蕉精品| 亚洲一区二区三区三| 日韩女同互慰一区二区| 色综合久久久久| 国产高清久久久久| 午夜久久久久久| 亚洲免费视频中文字幕| 精品国产乱码久久久久久老虎| 欧美日韩电影在线| 国产成人精品www牛牛影视| 亚洲一区二区综合| 国产不卡视频一区| 一区二区三区四区视频精品免费 | 亚洲精品免费一二三区| 欧美一区二区三区喷汁尤物| 处破女av一区二区| 黑人巨大精品欧美一区| 亚洲国产精品影院| 国产精品美女久久久久久久网站| 91精品国产色综合久久ai换脸| 床上的激情91.| 国产99久久久精品| 国产九色精品成人porny| 美女在线观看视频一区二区| 亚洲第一激情av| 成人欧美一区二区三区小说| 精品国产乱子伦一区| 欧美一区二区视频网站| 欧美三区在线观看| 欧美日韩精品欧美日韩精品一综合| 不卡的av中国片| 色综合久久天天综合网| 99久久婷婷国产精品综合| 99视频精品在线| 色综合久久久网| 色综合久久中文综合久久97| 欧美专区亚洲专区| 欧美剧情电影在线观看完整版免费励志电影 | 99久久精品费精品国产一区二区| 日韩成人免费在线| 亚洲精选免费视频| 亚洲五码中文字幕| 蜜桃视频免费观看一区| 国内精品久久久久影院薰衣草| 国模套图日韩精品一区二区 | 国产成人免费xxxxxxxx| 不卡的av网站| 精品国一区二区三区| 欧美一区二区日韩一区二区| 日韩欧美国产一二三区| 日本一区二区三区视频视频| 亚洲人成在线观看一区二区| 国产精品伦理在线| 丝袜诱惑制服诱惑色一区在线观看 | 婷婷激情综合网| 国产成人亚洲精品青草天美| 欧美日韩五月天| 亚洲精品精品亚洲| 秋霞电影一区二区| 色婷婷av久久久久久久| 日韩免费成人网| 亚洲线精品一区二区三区| 国内不卡的二区三区中文字幕| 91黄色小视频| 国产精品你懂的在线| 一级女性全黄久久生活片免费| 五月婷婷激情综合网| 欧美卡1卡2卡| 秋霞午夜鲁丝一区二区老狼| 精品国产亚洲在线| 成人一道本在线| 一区二区三区四区蜜桃| 欧美高清你懂得| 国产成人精品免费视频网站| 久久久久久久久久久久久夜| 黄色精品一二区| 亚洲国产精品高清| 99久久久国产精品| 亚洲国产成人高清精品| 欧美年轻男男videosbes| 亚洲国产精品尤物yw在线观看| 制服丝袜在线91| 精品一区二区三区在线观看| 26uuu久久天堂性欧美| 国产精品99久久久久久宅男| 国产女人aaa级久久久级| 色综合一区二区| 日韩av中文在线观看| 久久久久久久久97黄色工厂| 成人av电影在线播放| 夜夜嗨av一区二区三区网页| 欧美一区二区三区白人|