亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? svm_hideo.c

?? 關于支持向量機的源代碼 包括算法和說明
?? C
?? 第 1 頁 / 共 2 頁
字號:
/***********************************************************************/
/*                                                                     */
/*   svm_hideo.c                                                       */
/*                                                                     */
/*   The Hildreth and D'Espo solver specialized for SVMs.              */
/*                                                                     */
/*   Author: Thorsten Joachims                                         */
/*   Date: 02.07.02                                                    */
/*                                                                     */
/*   Copyright (c) 2002  Thorsten Joachims - All rights reserved       */
/*                                                                     */
/*   This software is available for non-commercial use only. It must   */
/*   not be modified and distributed without prior permission of the   */
/*   author. The author is not responsible for implications from the   */
/*   use of this software.                                             */
/*                                                                     */
/***********************************************************************/

# include <math.h>
# include "svm_common.h"

/* 
  solve the quadratic programming problem
 
  minimize   g0 * x + 1/2 x' * G * x
  subject to ce*x = ce0
             l <= x <= u
 
  The linear constraint vector ce can only have -1/+1 as entries 
*/

/* Common Block Declarations */

long verbosity;

# define PRIMAL_OPTIMAL      1
# define DUAL_OPTIMAL        2
# define MAXITER_EXCEEDED    3
# define NAN_SOLUTION        4
# define ONLY_ONE_VARIABLE   5

# define LARGEROUND          0
# define SMALLROUND          1

/* /////////////////////////////////////////////////////////////// */

# define DEF_PRECISION          1E-5
# define DEF_MAX_ITERATIONS     200
# define DEF_LINDEP_SENSITIVITY 1E-8
# define EPSILON_HIDEO          1E-20
# define EPSILON_EQ             1E-5

double *optimize_qp(QP *, double *, long, double *, LEARN_PARM *);
double *primal=0,*dual=0;
long   precision_violations=0;
double opt_precision=DEF_PRECISION;
long   maxiter=DEF_MAX_ITERATIONS;
double lindep_sensitivity=DEF_LINDEP_SENSITIVITY;
double *buffer;
long   *nonoptimal;

long  smallroundcount=0;
long  roundnumber=0;

/* /////////////////////////////////////////////////////////////// */

void *my_malloc();

int optimize_hildreth_despo(long,long,double,double,double,long,long,long,double,double *,
			    double *,double *,double *,double *,double *,
			    double *,double *,double *,long *,double *,double *);
int solve_dual(long,long,double,double,long,double *,double *,double *,
	       double *,double *,double *,double *,double *,double *,
	       double *,double *,double *,double *,long);

void linvert_matrix(double *, long, double *, double, long *);
void lprint_matrix(double *, long);
void ladd_matrix(double *, long, double);
void lcopy_matrix(double *, long, double *);
void lswitch_rows_matrix(double *, long, long, long);
void lswitchrk_matrix(double *, long, long, long);

double calculate_qp_objective(long, double *, double *, double *);



double *optimize_qp(qp,epsilon_crit,nx,threshold,learn_parm)
QP *qp;
double *epsilon_crit;
long nx; /* Maximum number of variables in QP */
double *threshold; 
LEARN_PARM *learn_parm;
/* start the optimizer and return the optimal values */
/* The HIDEO optimizer does not necessarily fully solve the problem. */
/* Since it requires a strictly positive definite hessian, the solution */
/* is restricted to a linear independent subset in case the matrix is */
/* only semi-definite. */
{
  long i,j;
  int result;
  double eq,progress;

  roundnumber++;

  if(!primal) { /* allocate memory at first call */
    primal=(double *)my_malloc(sizeof(double)*nx);
    dual=(double *)my_malloc(sizeof(double)*((nx+1)*2));
    nonoptimal=(long *)my_malloc(sizeof(long)*(nx));
    buffer=(double *)my_malloc(sizeof(double)*((nx+1)*2*(nx+1)*2+
					       nx*nx+2*(nx+1)*2+2*nx+1+2*nx+
					       nx+nx+nx*nx));
    (*threshold)=0;
    for(i=0;i<nx;i++) {
      primal[i]=0;
    }
  }

  if(verbosity>=4) { /* really verbose */
    printf("\n\n");
    eq=qp->opt_ce0[0];
    for(i=0;i<qp->opt_n;i++) {
      eq+=qp->opt_xinit[i]*qp->opt_ce[i];
      printf("%f: ",qp->opt_g0[i]);
      for(j=0;j<qp->opt_n;j++) {
	printf("%f ",qp->opt_g[i*qp->opt_n+j]);
      }
      printf(": a=%.10f < %f",qp->opt_xinit[i],qp->opt_up[i]);
      printf(": y=%f\n",qp->opt_ce[i]);
    }
    if(qp->opt_m) {
      printf("EQ: %f*x0",qp->opt_ce[0]);
      for(i=1;i<qp->opt_n;i++) {
	printf(" + %f*x%ld",qp->opt_ce[i],i);
      }
      printf(" = %f\n\n",-qp->opt_ce0[0]);
    }
  }

  result=optimize_hildreth_despo(qp->opt_n,qp->opt_m,
				 opt_precision,(*epsilon_crit),
				 learn_parm->epsilon_a,maxiter,
				 /* (long)PRIMAL_OPTIMAL, */
				 (long)0, (long)0,
				 lindep_sensitivity,
				 qp->opt_g,qp->opt_g0,qp->opt_ce,qp->opt_ce0,
				 qp->opt_low,qp->opt_up,primal,qp->opt_xinit,
				 dual,nonoptimal,buffer,&progress);
  if(verbosity>=3) { 
    printf("return(%d)...",result);
  }

  if(learn_parm->totwords < learn_parm->svm_maxqpsize) { 
    /* larger working sets will be linear dependent anyway */
    learn_parm->svm_maxqpsize=maxl(learn_parm->totwords,(long)2);
  }

  if(result == NAN_SOLUTION) {
    lindep_sensitivity*=2;  /* throw out linear dependent examples more */
                            /* generously */
    if(learn_parm->svm_maxqpsize>2) {
      learn_parm->svm_maxqpsize--;  /* decrease size of qp-subproblems */
    }
    precision_violations++;
  }

  /* take one round of only two variable to get unstuck */
  if((result != PRIMAL_OPTIMAL) || (!(roundnumber % 31)) || (progress <= 0)) {

    smallroundcount++;

    result=optimize_hildreth_despo(qp->opt_n,qp->opt_m,
				   opt_precision,(*epsilon_crit),
				   learn_parm->epsilon_a,(long)maxiter,
				   (long)PRIMAL_OPTIMAL,(long)SMALLROUND,
				   lindep_sensitivity,
				   qp->opt_g,qp->opt_g0,qp->opt_ce,qp->opt_ce0,
				   qp->opt_low,qp->opt_up,primal,qp->opt_xinit,
				   dual,nonoptimal,buffer,&progress);
    if(verbosity>=3) { 
      printf("return_srd(%d)...",result);
    }

    if(result != PRIMAL_OPTIMAL) {
      if(result != ONLY_ONE_VARIABLE) 
	precision_violations++;
      if(result == MAXITER_EXCEEDED) 
	maxiter+=100;
      if(result == NAN_SOLUTION) {
	lindep_sensitivity*=2;  /* throw out linear dependent examples more */
	                        /* generously */
	/* results not valid, so return inital values */
	for(i=0;i<qp->opt_n;i++) {
	  primal[i]=qp->opt_xinit[i];
	}
      }
    }
  }


  if(precision_violations > 50) {
    precision_violations=0;
    (*epsilon_crit)*=10.0; 
    if(verbosity>=1) {
      printf("\nWARNING: Relaxing epsilon on KT-Conditions (%f).\n",
	     (*epsilon_crit));
    }
  }	  

  if((qp->opt_m>0) && (result != NAN_SOLUTION) && (!isnan(dual[1]-dual[0])))
    (*threshold)=dual[1]-dual[0];
  else
    (*threshold)=0;

  if(verbosity>=4) { /* really verbose */
    printf("\n\n");
    eq=qp->opt_ce0[0];
    for(i=0;i<qp->opt_n;i++) {
      eq+=primal[i]*qp->opt_ce[i];
      printf("%f: ",qp->opt_g0[i]);
      for(j=0;j<qp->opt_n;j++) {
	printf("%f ",qp->opt_g[i*qp->opt_n+j]);
      }
      printf(": a=%.30f",primal[i]);
      printf(": nonopti=%ld",nonoptimal[i]);
      printf(": y=%f\n",qp->opt_ce[i]);
    }
    printf("eq-constraint=%.30f\n",eq);
    printf("b=%f\n",(*threshold));
    printf(" smallroundcount=%ld ",smallroundcount);
  }

  return(primal);
}



int optimize_hildreth_despo(n,m,precision,epsilon_crit,epsilon_a,maxiter,goal,
			    smallround,lindep_sensitivity,g,g0,ce,ce0,low,up,
			    primal,init,dual,lin_dependent,buffer,progress)
     long   n;            /* number of variables */
     long   m;            /* number of linear equality constraints [0,1] */
     double precision;    /* solve at least to this dual precision */
     double epsilon_crit; /* stop, if KT-Conditions approx fulfilled */
     double epsilon_a;    /* precision of alphas at bounds */
     long   maxiter;      /* stop after this many iterations */
     long   goal;         /* keep going until goal fulfilled */
     long   smallround;   /* use only two variables of steepest descent */
     double lindep_sensitivity; /* epsilon for detecting linear dependent ex */
     double *g;           /* hessian of objective */
     double *g0;          /* linear part of objective */
     double *ce,*ce0;     /* linear equality constraints */
     double *low,*up;     /* box constraints */
     double *primal;      /* primal variables */
     double *init;        /* initial values of primal */
     double *dual;        /* dual variables */
     long   *lin_dependent;
     double *buffer;
     double *progress;    /* delta in the objective function between
                             before and after */
{
  long i,j,k,from,to,n_indep,changed;
  double sum,bmin=0,bmax=0;
  double *d,*d0,*ig,*dual_old,*temp,*start;       
  double *g0_new,*g_new,*ce_new,*ce0_new,*low_new,*up_new;
  double add,t;
  int result;
  double obj_before,obj_after; 
  long b1,b2;
  double g0_b1,g0_b2,ce0_b;

  g0_new=&(buffer[0]);    /* claim regions of buffer */
  d=&(buffer[n]);
  d0=&(buffer[n+(n+m)*2*(n+m)*2]);
  ce_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2]);
  ce0_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n]);
  ig=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m]);
  dual_old=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n]);
  low_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2]);
  up_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n]);
  start=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n]);
  g_new=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n+n]);
  temp=&(buffer[n+(n+m)*2*(n+m)*2+(n+m)*2+n+m+n*n+(n+m)*2+n+n+n+n*n]);

  b1=-1;
  b2=-1;
  for(i=0;i<n;i++) {   /* get variables with steepest feasible descent */
    sum=g0[i];         
    for(j=0;j<n;j++) 
      sum+=init[j]*g[i*n+j];
    sum=sum*ce[i];
    if(((b1==-1) || (sum<bmin)) 
       && (!((init[i]<=(low[i]+epsilon_a)) && (ce[i]<0.0)))
       && (!((init[i]>=( up[i]-epsilon_a)) && (ce[i]>0.0)))
       ) {
      bmin=sum;
      b1=i;
    }
    if(((b2==-1) || (sum>=bmax)) 
       && (!((init[i]<=(low[i]+epsilon_a)) && (ce[i]>0.0)))
       && (!((init[i]>=( up[i]-epsilon_a)) && (ce[i]<0.0)))
       ) {
      bmax=sum;
      b2=i;
    }
  }
  /* in case of unbiased hyperplane, the previous projection on */
  /* equality constraint can lead to b1 or b2 being -1. */
  if((b1 == -1) || (b2 == -1)) {
    b1=maxl(b1,b2);
    b2=maxl(b1,b2);
  }

  for(i=0;i<n;i++) {
    start[i]=init[i];
  }

  /* in case both example vectors are linearly dependent */
  /* WARNING: Assumes that ce[] in {-1,1} */
  add=0;
  changed=0;
  if((b1 != b2) && (m==1)) {
    for(i=0;i<n;i++) {  /* fix other vectors */
      if(i==b1) 
	g0_b1=g0[i];
      if(i==b2) 
	g0_b2=g0[i];
    }
    ce0_b=ce0[0];
    for(i=0;i<n;i++) {  
      if((i!=b1) && (i!=b2)) {
	for(j=0;j<n;j++) {
	  if(j==b1) 
	    g0_b1+=start[i]*g[i*n+j];
	  if(j==b2) 
	    g0_b2+=start[i]*g[i*n+j];
	}
	ce0_b-=(start[i]*ce[i]);
      }
    }
    if((g[b1*n+b2] == g[b1*n+b1]) && (g[b1*n+b2] == g[b2*n+b2])) {
      /* printf("euqal\n"); */
      if(ce[b1] == ce[b2]) { 
	if(g0_b1 <= g0_b2) { /* set b1 to upper bound */
	  /* printf("case +=<\n"); */
	  changed=1;
	  t=up[b1]-init[b1];
	  if((init[b2]-low[b2]) < t) {
	    t=init[b2]-low[b2];
	  }
	  start[b1]=init[b1]+t;
	  start[b2]=init[b2]-t;
	}
	else if(g0_b1 > g0_b2) { /* set b2 to upper bound */
	  /* printf("case +=>\n"); */
	  changed=1;
	  t=up[b2]-init[b2];
	  if((init[b1]-low[b1]) < t) {
	    t=init[b1]-low[b1];
	  }
	  start[b1]=init[b1]-t;
	  start[b2]=init[b2]+t;
	}
      }
      else if(((g[b1*n+b1]>0) || (g[b2*n+b2]>0))) { /* (ce[b1] != ce[b2]) */ 
	/* printf("case +!\n"); */
	t=((ce[b2]/ce[b1])*g0[b1]-g0[b2]+ce0[0]*(g[b1*n+b1]*ce[b2]/ce[b1]-g[b1*n+b2]/ce[b1]))/((ce[b2]*ce[b2]/(ce[b1]*ce[b1]))*g[b1*n+b1]+g[b2*n+b2]-2*(g[b1*n+b2]*ce[b2]/ce[b1]))-init[b2];
	changed=1;
	if((up[b2]-init[b2]) < t) {
	  t=up[b2]-init[b2];
	}
	if((init[b2]-low[b2]) < -t) {
	  t=-(init[b2]-low[b2]);
	}
	if((up[b1]-init[b1]) < t) {
	  t=(up[b1]-init[b1]);
	}
	if((init[b1]-low[b1]) < -t) {
	  t=-(init[b1]-low[b1]);
	}
	start[b1]=init[b1]+t;
	start[b2]=init[b2]+t;
      }
    }
    if((-g[b1*n+b2] == g[b1*n+b1]) && (-g[b1*n+b2] == g[b2*n+b2])) {
      /* printf("diffeuqal\n"); */
      if(ce[b1] != ce[b2]) {
	if((g0_b1+g0_b2) < 0) { /* set b1 and b2 to upper bound */
	  /* printf("case -!<\n"); */
	  changed=1;
	  t=up[b1]-init[b1];
	  if((up[b2]-init[b2]) < t) {
	    t=up[b2]-init[b2];
	  }
	  start[b1]=init[b1]+t;
	  start[b2]=init[b2]+t;
	}     
	else if((g0_b1+g0_b2) >= 0) { /* set b1 and b2 to lower bound */
	  /* printf("case -!>\n"); */
	  changed=1;
	  t=init[b1]-low[b1];
	  if((init[b2]-low[b2]) < t) {
	    t=init[b2]-low[b2];
	  }
	  start[b1]=init[b1]-t;
	  start[b2]=init[b2]-t;
	}
      }
      else if(((g[b1*n+b1]>0) || (g[b2*n+b2]>0))) { /* (ce[b1]==ce[b2]) */
	/*  printf("case -=\n"); */
	t=((ce[b2]/ce[b1])*g0[b1]-g0[b2]+ce0[0]*(g[b1*n+b1]*ce[b2]/ce[b1]-g[b1*n+b2]/ce[b1]))/((ce[b2]*ce[b2]/(ce[b1]*ce[b1]))*g[b1*n+b1]+g[b2*n+b2]-2*(g[b1*n+b2]*ce[b2]/ce[b1]))-init[b2];
	changed=1;
	if((up[b2]-init[b2]) < t) {
	  t=up[b2]-init[b2];
	}
	if((init[b2]-low[b2]) < -t) {
	  t=-(init[b2]-low[b2]);
	}
	if((up[b1]-init[b1]) < -t) {
	  t=-(up[b1]-init[b1]);
	}
	if((init[b1]-low[b1]) < t) {
	  t=init[b1]-low[b1];
	}
	start[b1]=init[b1]-t;
	start[b2]=init[b2]+t;
      }	
    }
  }
  /* if we have a biased hyperplane, then adding a constant to the */
  /* hessian does not change the solution. So that is done for examples */
  /* with zero diagonal entry, since HIDEO cannot handle them. */
  if((m>0) 
     && ((fabs(g[b1*n+b1]) < lindep_sensitivity) 
	 || (fabs(g[b2*n+b2]) < lindep_sensitivity))) {
    /* printf("Case 0\n"); */
    add+=0.093274;
  }    
  /* in case both examples are linear dependent */
  else if((m>0) 
	  && (g[b1*n+b2] != 0 && g[b2*n+b2] != 0)
	  && (fabs(g[b1*n+b1]/g[b1*n+b2] - g[b1*n+b2]/g[b2*n+b2])
	      < lindep_sensitivity)) { 
    /* printf("Case lindep\n"); */
    add+=0.078274;
  }

  /* special case for zero diagonal entry on unbiased hyperplane */
  if((m==0) && (b1>=0))  {
    if(fabs(g[b1*n+b1]) < lindep_sensitivity) { 
      /* printf("Case 0b1\n"); */
      for(i=0;i<n;i++) {  /* fix other vectors */
	if(i==b1) 
	  g0_b1=g0[i];
      }
      for(i=0;i<n;i++) {  
	if(i!=b1) {
	  for(j=0;j<n;j++) {
	    if(j==b1) 
	      g0_b1+=start[i]*g[i*n+j];
	  }
	}
      }
      if(g0_b1<0)
	start[b1]=up[b1];
      if(g0_b1>=0)
	start[b1]=low[b1];
    }
  }
  if((m==0) && (b2>=0))  {
    if(fabs(g[b2*n+b2]) < lindep_sensitivity) { 
      /* printf("Case 0b2\n"); */
      for(i=0;i<n;i++) {  /* fix other vectors */
	if(i==b2) 
	  g0_b2=g0[i];
      }
      for(i=0;i<n;i++) {  
	if(i!=b2) {
	  for(j=0;j<n;j++) {
	    if(j==b2) 
	      g0_b2+=start[i]*g[i*n+j];
	  }
	}
      }
      if(g0_b2<0)
	start[b2]=up[b2];
      if(g0_b2>=0)
	start[b2]=low[b2];
    }
  }

  /* printf("b1=%ld,b2=%ld\n",b1,b2); */

  lcopy_matrix(g,n,d);
  if((m==1) && (add>0.0)) {
    for(j=0;j<n;j++) {
      for(k=0;k<n;k++) {
	d[j*n+k]+=add*ce[j]*ce[k];
      }
    }
  }
  else {
    add=0.0;
  }

  if(n>2) {                    /* switch, so that variables are better mixed */
    lswitchrk_matrix(d,n,b1,(long)0); 
    if(b2 == 0) 
      lswitchrk_matrix(d,n,b1,(long)1); 
    else
      lswitchrk_matrix(d,n,b2,(long)1); 
  }
  if(smallround == SMALLROUND) {
    for(i=2;i<n;i++) {
      lin_dependent[i]=1;
    }
    if(m>0) { /* for biased hyperplane, pick two variables */
      lin_dependent[0]=0;
      lin_dependent[1]=0;
    }
    else {    /* for unbiased hyperplane, pick only one variable */
      lin_dependent[0]=smallroundcount % 2;
      lin_dependent[1]=(smallroundcount+1) % 2;
    }
  }
  else {
    for(i=0;i<n;i++) {
      lin_dependent[i]=0;
    }
  }
  linvert_matrix(d,n,ig,lindep_sensitivity,lin_dependent);
  if(n>2) {                    /* now switch back */
    if(b2 == 0) {

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
99久久精品免费看国产免费软件| 国产精品免费人成网站| 成人福利视频网站| 欧美大胆一级视频| 椎名由奈av一区二区三区| 高清国产午夜精品久久久久久| 国产日产欧美一区| 不卡的av网站| 一区二区三区毛片| 9191成人精品久久| 国产高清亚洲一区| 国产精品国产三级国产普通话三级 | 亚洲成精国产精品女| 亚洲最新视频在线观看| 亚洲综合在线第一页| 亚洲va在线va天堂| 午夜久久久影院| 久久99精品一区二区三区三区| 国产一区二区在线观看免费| 国产成人免费视频| 91蜜桃在线免费视频| 欧美欧美欧美欧美首页| 国产精品乱码人人做人人爱| 亚洲一区在线观看网站| 狠狠色2019综合网| 色综合天天综合网天天看片| 欧美日韩国产天堂| 国产偷国产偷亚洲高清人白洁 | 日本一区二区视频在线| 国产精品人人做人人爽人人添| 一区二区在线观看视频在线观看| 亚洲成人资源在线| 色欧美日韩亚洲| 亚洲免费观看高清在线观看| 偷窥少妇高潮呻吟av久久免费| 亚洲欧美日韩在线播放| 亚洲人成精品久久久久| 9色porny自拍视频一区二区| 蜜臀av一区二区在线免费观看| 久久国产麻豆精品| 国产精品伦理一区二区| 69堂成人精品免费视频| 成人国产精品免费观看动漫| 日韩精品电影一区亚洲| 国产精品久久久爽爽爽麻豆色哟哟| 欧美精品自拍偷拍| 成人av免费在线播放| 麻豆专区一区二区三区四区五区| 欧美大度的电影原声| 日韩黄色小视频| 69精品人人人人| 日本三级韩国三级欧美三级| 91精品国产综合久久久久久久| 日韩伦理电影网| 丝袜美腿亚洲一区二区图片| 免费看精品久久片| 欧美色综合影院| 一区二区三区自拍| av在线一区二区| 国产精品嫩草影院av蜜臀| 久久精品国产久精国产爱| 91精品国产综合久久福利| 亚洲精选一二三| 精品一区二区三区免费| 欧美男男青年gay1069videost| 国产精品家庭影院| 国产一区二区久久| 91麻豆精东视频| 精品国产在天天线2019| 石原莉奈在线亚洲三区| 欧美欧美午夜aⅴ在线观看| 久久久国产一区二区三区四区小说 | 无码av中文一区二区三区桃花岛| 欧美视频一二三区| 欧美一区二区大片| 综合久久综合久久| 国产精选一区二区三区| 亚洲国产精品一区二区久久恐怖片| 亚洲自拍偷拍网站| 九一九一国产精品| 67194成人在线观看| 欧美日韩日日夜夜| 色狠狠一区二区| 天堂成人国产精品一区| 亚洲伊人伊色伊影伊综合网| 中文字幕亚洲综合久久菠萝蜜| www久久久久| 精品噜噜噜噜久久久久久久久试看 | 久久免费的精品国产v∧| 色综合天天综合网天天狠天天| 专区另类欧美日韩| 日韩免费电影一区| 韩国欧美一区二区| 亚洲一区日韩精品中文字幕| 精品日韩在线一区| 欧美女孩性生活视频| 国产在线播放一区二区三区| 日韩免费福利电影在线观看| 91国偷自产一区二区开放时间| 热久久久久久久| 亚洲美女屁股眼交3| 欧美日韩二区三区| 93久久精品日日躁夜夜躁欧美| 久久精品久久99精品久久| 亚洲视频在线一区二区| 国产精品网站导航| 欧美三级欧美一级| 色婷婷久久久久swag精品| 国产精品77777竹菊影视小说| 亚洲国产成人porn| 亚洲丝袜精品丝袜在线| 偷拍一区二区三区| 亚洲一区二区黄色| 黄页视频在线91| 亚洲成人av免费| 亚洲欧美日韩国产另类专区| 精品欧美久久久| 精品成人私密视频| 婷婷激情综合网| 久久久综合视频| 狠狠网亚洲精品| ㊣最新国产の精品bt伙计久久| 亚洲精品菠萝久久久久久久| 一级中文字幕一区二区| 久久精品国产亚洲5555| 成人精品高清在线| 欧美精品国产精品| 91捆绑美女网站| 欧美一区二区私人影院日本| 国产精品久久久久久久久晋中| 国产精品久久久久久久裸模| 久久成人免费网| 国产一区二区三区| 色av成人天堂桃色av| 精品视频1区2区| 色激情天天射综合网| 91精品国产欧美一区二区成人| 欧美亚洲国产bt| 久久蜜桃香蕉精品一区二区三区| 欧美一区二区三区电影| 日本一区二区综合亚洲| 亚洲国产aⅴ天堂久久| 老司机精品视频一区二区三区| 国产精品一区二区在线看| 欧美人动与zoxxxx乱| 国产精品福利电影一区二区三区四区| 亚洲成人动漫在线免费观看| 国产成人一区在线| 91麻豆精品国产91久久久| 亚洲私人影院在线观看| 亚洲成人av福利| 日本高清不卡aⅴ免费网站| www一区二区| 乱中年女人伦av一区二区| 日本高清免费不卡视频| 国产精品国产三级国产普通话99| 青草av.久久免费一区| 欧美大度的电影原声| 开心九九激情九九欧美日韩精美视频电影| 久久嫩草精品久久久精品| 国产寡妇亲子伦一区二区| 不卡视频免费播放| 制服丝袜中文字幕一区| 奇米色一区二区| 激情文学综合插| 日韩不卡一区二区三区| 亚洲精品视频在线观看免费| 国产成人免费在线观看| 精品欧美一区二区三区精品久久| 亚洲大片在线观看| 色综合久久久网| 国产精品国产三级国产aⅴ原创| 国产91色综合久久免费分享| 日韩精品一区二区三区中文精品| 亚洲尤物视频在线| 色综合天天综合在线视频| 亚洲激情成人在线| 精品制服美女久久| 亚洲国产三级在线| 337p亚洲精品色噜噜| 国内成人自拍视频| 亚洲狠狠爱一区二区三区| 欧洲视频一区二区| 韩国v欧美v亚洲v日本v| 一区二区在线免费观看| 日韩午夜激情电影| 97精品久久久午夜一区二区三区 | 国产精品美日韩| 91免费在线视频观看| 蜜桃一区二区三区在线| 奇米影视7777精品一区二区| 国产mv日韩mv欧美| 91成人国产精品| 精品国产免费人成电影在线观看四季| 午夜精品福利在线| 91精品国产一区二区三区香蕉| 日韩有码一区二区三区| 欧美一级日韩一级| 国产一区二区三区视频在线播放| 精品裸体舞一区二区三区|