亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? bootpz.c

?? linux2.6.16版本
?? C
字號:
/* * arch/alpha/boot/bootpz.c * * Copyright (C) 1997 Jay Estabrook * * This file is used for creating a compressed BOOTP file for the * Linux/AXP kernel * * based significantly on the arch/alpha/boot/main.c of Linus Torvalds * and the decompression code from MILO. */#include <linux/kernel.h>#include <linux/string.h>#include <linux/version.h>#include <linux/mm.h>#include <asm/system.h>#include <asm/console.h>#include <asm/hwrpb.h>#include <asm/pgtable.h>#include <asm/io.h>#include <stdarg.h>#include "kzsize.h"/* FIXME FIXME FIXME */#define MALLOC_AREA_SIZE 0x200000 /* 2MB for now *//* FIXME FIXME FIXME *//*  WARNING NOTE  It is very possible that turning on additional messages may cause  kernel image corruption due to stack usage to do the printing.*/#undef DEBUG_CHECK_RANGE#undef DEBUG_ADDRESSES#undef DEBUG_LAST_STEPSextern unsigned long switch_to_osf_pal(unsigned long nr,	struct pcb_struct * pcb_va, struct pcb_struct * pcb_pa,	unsigned long *vptb);extern int decompress_kernel(void* destination, void *source,			     size_t ksize, size_t kzsize);extern void move_stack(unsigned long new_stack);struct hwrpb_struct *hwrpb = INIT_HWRPB;static struct pcb_struct pcb_va[1];/* * Find a physical address of a virtual object.. * * This is easy using the virtual page table address. */#define VPTB	((unsigned long *) 0x200000000)static inline unsigned longfind_pa(unsigned long address){	unsigned long result;	result = VPTB[address >> 13];	result >>= 32;	result <<= 13;	result |= address & 0x1fff;	return result;}	intcheck_range(unsigned long vstart, unsigned long vend,	    unsigned long kstart, unsigned long kend){	unsigned long vaddr, kaddr;#ifdef DEBUG_CHECK_RANGE	srm_printk("check_range: V[0x%lx:0x%lx] K[0x%lx:0x%lx]\n",		   vstart, vend, kstart, kend);#endif	/* do some range checking for detecting an overlap... */	for (vaddr = vstart; vaddr <= vend; vaddr += PAGE_SIZE)	{		kaddr = (find_pa(vaddr) | PAGE_OFFSET);		if (kaddr >= kstart && kaddr <= kend)		{#ifdef DEBUG_CHECK_RANGE			srm_printk("OVERLAP: vaddr 0x%lx kaddr 0x%lx"				   " [0x%lx:0x%lx]\n",				   vaddr, kaddr, kstart, kend);#endif			return 1;		}	}	return 0;}/* * This function moves into OSF/1 pal-code, and has a temporary * PCB for that. The kernel proper should replace this PCB with * the real one as soon as possible. * * The page table muckery in here depends on the fact that the boot * code has the L1 page table identity-map itself in the second PTE * in the L1 page table. Thus the L1-page is virtually addressable * itself (through three levels) at virtual address 0x200802000. */#define L1	((unsigned long *) 0x200802000)voidpal_init(void){	unsigned long i, rev;	struct percpu_struct * percpu;	struct pcb_struct * pcb_pa;	/* Create the dummy PCB.  */	pcb_va->ksp = 0;	pcb_va->usp = 0;	pcb_va->ptbr = L1[1] >> 32;	pcb_va->asn = 0;	pcb_va->pcc = 0;	pcb_va->unique = 0;	pcb_va->flags = 1;	pcb_va->res1 = 0;	pcb_va->res2 = 0;	pcb_pa = (struct pcb_struct *)find_pa((unsigned long)pcb_va);	/*	 * a0 = 2 (OSF)	 * a1 = return address, but we give the asm the vaddr of the PCB	 * a2 = physical addr of PCB	 * a3 = new virtual page table pointer	 * a4 = KSP (but the asm sets it)	 */	srm_printk("Switching to OSF PAL-code... ");	i = switch_to_osf_pal(2, pcb_va, pcb_pa, VPTB);	if (i) {		srm_printk("failed, code %ld\n", i);		__halt();	}	percpu = (struct percpu_struct *)		(INIT_HWRPB->processor_offset + (unsigned long) INIT_HWRPB);	rev = percpu->pal_revision = percpu->palcode_avail[2];	srm_printk("OK (rev %lx)\n", rev);	tbia(); /* do it directly in case we are SMP */}/* * Start the kernel. */static inline voidrunkernel(void){	__asm__ __volatile__(		"bis %0,%0,$27\n\t"		"jmp ($27)"		: /* no outputs: it doesn't even return */		: "r" (START_ADDR));}/* Must record the SP (it is virtual) on entry, so we can make sure   not to overwrite it during movement or decompression. */unsigned long SP_on_entry;/* Calculate the kernel image address based on the end of the BOOTP   bootstrapper (ie this program).*/extern char _end;#define KERNEL_ORIGIN \	((((unsigned long)&_end) + 511) & ~511)/* Round address to next higher page boundary. */#define NEXT_PAGE(a)	(((a) | (PAGE_SIZE - 1)) + 1)#ifdef INITRD_IMAGE_SIZE# define REAL_INITRD_SIZE INITRD_IMAGE_SIZE#else# define REAL_INITRD_SIZE 0#endif/* Defines from include/asm-alpha/system.h	BOOT_ADDR	Virtual address at which the consoles loads			the BOOTP image.	KERNEL_START    KSEG address at which the kernel is built to run,			which includes some initial data pages before the			code.	START_ADDR	KSEG address of the entry point of kernel code.	ZERO_PGE	KSEG address of page full of zeroes, but 			upon entry to kerne cvan be expected			to hold the parameter list and possible			INTRD information.   These are used in the local defines below.*/  /* Virtual addresses for the BOOTP image. Note that this includes the   bootstrapper code as well as the compressed kernel image, and   possibly the INITRD image.   Oh, and do NOT forget the STACK, which appears to be placed virtually   beyond the end of the loaded image.*/#define V_BOOT_IMAGE_START	BOOT_ADDR#define V_BOOT_IMAGE_END	SP_on_entry/* Virtual addresses for just the bootstrapper part of the BOOTP image. */#define V_BOOTSTRAPPER_START	BOOT_ADDR#define V_BOOTSTRAPPER_END	KERNEL_ORIGIN/* Virtual addresses for just the data part of the BOOTP   image. This may also include the INITRD image, but always   includes the STACK.*/#define V_DATA_START		KERNEL_ORIGIN#define V_INITRD_START		(KERNEL_ORIGIN + KERNEL_Z_SIZE)#define V_INTRD_END		(V_INITRD_START + REAL_INITRD_SIZE)#define V_DATA_END	 	V_BOOT_IMAGE_END/* KSEG addresses for the uncompressed kernel.   Note that the end address includes workspace for the decompression.   Note also that the DATA_START address is ZERO_PGE, to which we write   just before jumping to the kernel image at START_ADDR. */#define K_KERNEL_DATA_START	ZERO_PGE#define K_KERNEL_IMAGE_START	START_ADDR#define K_KERNEL_IMAGE_END	(START_ADDR + KERNEL_SIZE)/* Define to where we may have to decompress the kernel image, before   we move it to the final position, in case of overlap. This will be   above the final position of the kernel.   Regardless of overlap, we move the INITRD image to the end of this   copy area, because there needs to be a buffer area after the kernel   for "bootmem" anyway.*/#define K_COPY_IMAGE_START	NEXT_PAGE(K_KERNEL_IMAGE_END)/* Reserve one page below INITRD for the new stack. */#define K_INITRD_START \    NEXT_PAGE(K_COPY_IMAGE_START + KERNEL_SIZE + PAGE_SIZE)#define K_COPY_IMAGE_END \    (K_INITRD_START + REAL_INITRD_SIZE + MALLOC_AREA_SIZE)#define K_COPY_IMAGE_SIZE \    NEXT_PAGE(K_COPY_IMAGE_END - K_COPY_IMAGE_START)voidstart_kernel(void){	int must_move = 0;	/* Initialize these for the decompression-in-place situation,	   which is the smallest amount of work and most likely to	   occur when using the normal START_ADDR of the kernel	   (currently set to 16MB, to clear all console code.	*/	unsigned long uncompressed_image_start = K_KERNEL_IMAGE_START;	unsigned long uncompressed_image_end = K_KERNEL_IMAGE_END;	unsigned long initrd_image_start = K_INITRD_START;	/*	 * Note that this crufty stuff with static and envval	 * and envbuf is because:	 *	 * 1. Frequently, the stack is short, and we don't want to overrun;	 * 2. Frequently the stack is where we are going to copy the kernel to;	 * 3. A certain SRM console required the GET_ENV output to stack.	 *    ??? A comment in the aboot sources indicates that the GET_ENV	 *    destination must be quadword aligned.  Might this explain the	 *    behaviour, rather than requiring output to the stack, which	 *    seems rather far-fetched.	 */	static long nbytes;	static char envval[256] __attribute__((aligned(8)));	register unsigned long asm_sp asm("30");	SP_on_entry = asm_sp;	srm_printk("Linux/Alpha BOOTPZ Loader for Linux " UTS_RELEASE "\n");	/* Validity check the HWRPB. */	if (INIT_HWRPB->pagesize != 8192) {		srm_printk("Expected 8kB pages, got %ldkB\n",		           INIT_HWRPB->pagesize >> 10);		return;	}	if (INIT_HWRPB->vptb != (unsigned long) VPTB) {		srm_printk("Expected vptb at %p, got %p\n",			   VPTB, (void *)INIT_HWRPB->vptb);		return;	}	/* PALcode (re)initialization. */	pal_init();	/* Get the parameter list from the console environment variable. */	nbytes = callback_getenv(ENV_BOOTED_OSFLAGS, envval, sizeof(envval));	if (nbytes < 0 || nbytes >= sizeof(envval)) {		nbytes = 0;	}	envval[nbytes] = '\0';#ifdef DEBUG_ADDRESSES	srm_printk("START_ADDR 0x%lx\n", START_ADDR);	srm_printk("KERNEL_ORIGIN 0x%lx\n", KERNEL_ORIGIN);	srm_printk("KERNEL_SIZE 0x%x\n", KERNEL_SIZE);	srm_printk("KERNEL_Z_SIZE 0x%x\n", KERNEL_Z_SIZE);#endif	/* Since all the SRM consoles load the BOOTP image at virtual	 * 0x20000000, we have to ensure that the physical memory	 * pages occupied by that image do NOT overlap the physical	 * address range where the kernel wants to be run.  This	 * causes real problems when attempting to cdecompress the	 * former into the latter... :-(	 *	 * So, we may have to decompress/move the kernel/INITRD image	 * virtual-to-physical someplace else first before moving	 * kernel /INITRD to their final resting places... ;-}	 *	 * Sigh...	 */	/* First, check to see if the range of addresses occupied by	   the bootstrapper part of the BOOTP image include any of the	   physical pages into which the kernel will be placed for	   execution.	   We only need check on the final kernel image range, since we	   will put the INITRD someplace that we can be sure is not	   in conflict.	 */	if (check_range(V_BOOTSTRAPPER_START, V_BOOTSTRAPPER_END,			K_KERNEL_DATA_START, K_KERNEL_IMAGE_END))	{		srm_printk("FATAL ERROR: overlap of bootstrapper code\n");		__halt();	}	/* Next, check to see if the range of addresses occupied by	   the compressed kernel/INITRD/stack portion of the BOOTP	   image include any of the physical pages into which the	   decompressed kernel or the INITRD will be placed for	   execution.	 */	if (check_range(V_DATA_START, V_DATA_END,			K_KERNEL_IMAGE_START, K_COPY_IMAGE_END))	{#ifdef DEBUG_ADDRESSES		srm_printk("OVERLAP: cannot decompress in place\n");#endif		uncompressed_image_start = K_COPY_IMAGE_START;		uncompressed_image_end = K_COPY_IMAGE_END;		must_move = 1;		/* Finally, check to see if the range of addresses		   occupied by the compressed kernel/INITRD part of		   the BOOTP image include any of the physical pages		   into which that part is to be copied for		   decompression.		*/		while (check_range(V_DATA_START, V_DATA_END,				   uncompressed_image_start,				   uncompressed_image_end))		{#if 0			uncompressed_image_start += K_COPY_IMAGE_SIZE;			uncompressed_image_end += K_COPY_IMAGE_SIZE;			initrd_image_start += K_COPY_IMAGE_SIZE;#else			/* Keep as close as possible to end of BOOTP image. */			uncompressed_image_start += PAGE_SIZE;			uncompressed_image_end += PAGE_SIZE;			initrd_image_start += PAGE_SIZE;#endif		}	}	srm_printk("Starting to load the kernel with args '%s'\n", envval);#ifdef DEBUG_ADDRESSES	srm_printk("Decompressing the kernel...\n"		   "...from 0x%lx to 0x%lx size 0x%x\n",		   V_DATA_START,		   uncompressed_image_start,		   KERNEL_SIZE);#endif        decompress_kernel((void *)uncompressed_image_start,			  (void *)V_DATA_START,			  KERNEL_SIZE, KERNEL_Z_SIZE);	/*	 * Now, move things to their final positions, if/as required.	 */#ifdef INITRD_IMAGE_SIZE	/* First, we always move the INITRD image, if present. */#ifdef DEBUG_ADDRESSES	srm_printk("Moving the INITRD image...\n"		   " from 0x%lx to 0x%lx size 0x%x\n",		   V_INITRD_START,		   initrd_image_start,		   INITRD_IMAGE_SIZE);#endif	memcpy((void *)initrd_image_start, (void *)V_INITRD_START,	       INITRD_IMAGE_SIZE);#endif /* INITRD_IMAGE_SIZE */	/* Next, we may have to move the uncompressed kernel to the	   final destination.	 */	if (must_move) {#ifdef DEBUG_ADDRESSES		srm_printk("Moving the uncompressed kernel...\n"			   "...from 0x%lx to 0x%lx size 0x%x\n",			   uncompressed_image_start,			   K_KERNEL_IMAGE_START,			   (unsigned)KERNEL_SIZE);#endif		/*		 * Move the stack to a safe place to ensure it won't be		 * overwritten by kernel image.		 */		move_stack(initrd_image_start - PAGE_SIZE);		memcpy((void *)K_KERNEL_IMAGE_START,		       (void *)uncompressed_image_start, KERNEL_SIZE);	}		/* Clear the zero page, then move the argument list in. */#ifdef DEBUG_LAST_STEPS	srm_printk("Preparing ZERO_PGE...\n");#endif	memset((char*)ZERO_PGE, 0, PAGE_SIZE);	strcpy((char*)ZERO_PGE, envval);#ifdef INITRD_IMAGE_SIZE#ifdef DEBUG_LAST_STEPS	srm_printk("Preparing INITRD info...\n");#endif	/* Finally, set the INITRD paramenters for the kernel. */	((long *)(ZERO_PGE+256))[0] = initrd_image_start;	((long *)(ZERO_PGE+256))[1] = INITRD_IMAGE_SIZE;#endif /* INITRD_IMAGE_SIZE */#ifdef DEBUG_LAST_STEPS	srm_printk("Doing 'runkernel()'...\n");#endif	runkernel();}

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
一区二区三区免费在线观看| 日韩一级免费观看| 欧美日韩久久久一区| 日韩欧美亚洲国产另类| 国产午夜亚洲精品羞羞网站| 亚洲三级小视频| 日本色综合中文字幕| 国产经典欧美精品| 91浏览器在线视频| 欧美mv日韩mv国产网站app| 中文字幕在线不卡| 蜜桃av一区二区三区| www.久久精品| 91精品久久久久久久久99蜜臂| 久久精品在线观看| 视频在线在亚洲| youjizz国产精品| 欧美一区二区三区日韩| 国产精品久久久久影院老司 | 豆国产96在线|亚洲| 欧美在线观看一区二区| 精品久久久久久久久久久久包黑料| 亚洲三级免费观看| 国产综合色在线视频区| 欧美日韩精品欧美日韩精品一| 国产夜色精品一区二区av| 视频一区欧美日韩| 97久久精品人人爽人人爽蜜臀| 日韩精品在线网站| 亚洲成在人线免费| 成人av网站免费| 日韩欧美黄色影院| 亚洲成人www| 色噜噜狠狠一区二区三区果冻| 26uuu国产一区二区三区| 视频精品一区二区| 一本大道久久a久久综合| 国产网红主播福利一区二区| 免费在线观看日韩欧美| 欧美日韩中文字幕精品| 亚洲欧洲av一区二区三区久久| 久久99精品久久久久久动态图| 欧美视频你懂的| 亚洲精品欧美综合四区| av在线不卡网| 国产欧美精品一区| 狠狠网亚洲精品| 日韩免费高清电影| 秋霞电影网一区二区| 欧美日韩一区高清| 一区二区三区四区不卡在线| 波多野结衣在线aⅴ中文字幕不卡| 精品少妇一区二区| 蜜桃av噜噜一区| 日韩欧美一区在线| 免费在线观看成人| 日韩三级视频在线看| 天天做天天摸天天爽国产一区| 欧美综合一区二区| 一区二区三区在线视频免费| 99久久综合99久久综合网站| 国产欧美一区二区三区在线老狼| 国产一区二区精品久久99| 精品国产一区二区三区忘忧草| 另类小说欧美激情| 日韩欧美高清一区| 韩国女主播成人在线观看| 精品国精品国产尤物美女| 九九视频精品免费| 久久综合九色综合欧美就去吻| 久久国产福利国产秒拍| 欧美v日韩v国产v| 国内精品不卡在线| 国产日韩欧美一区二区三区综合| 国产乱子伦视频一区二区三区| 2020国产精品自拍| 成人精品视频.| 亚洲图片另类小说| 日本道在线观看一区二区| 一区二区成人在线| 欧美理论电影在线| 麻豆久久久久久久| 久久久激情视频| 成人免费毛片嘿嘿连载视频| 国产精品家庭影院| 日本韩国欧美一区| 丝袜美腿一区二区三区| 欧美刺激午夜性久久久久久久| 国产一区二区女| 中文字幕在线一区免费| 91麻豆国产福利在线观看| 性做久久久久久久久| 日韩一区二区三区免费看| 免费成人在线观看视频| 2023国产精品自拍| 91香蕉视频mp4| 午夜欧美在线一二页| 欧美mv日韩mv| 99精品视频在线观看| 亚洲一区二区高清| 欧美成人精品高清在线播放| 国产成人精品亚洲午夜麻豆| 中文字幕亚洲一区二区av在线| 欧美在线观看视频一区二区 | 精品日产卡一卡二卡麻豆| 国产精品系列在线播放| 亚洲人午夜精品天堂一二香蕉| 欧美日韩综合在线| 国产麻豆成人精品| 亚洲色图制服丝袜| 日韩手机在线导航| 99精品国产热久久91蜜凸| 日韩精品电影在线观看| 国产女同互慰高潮91漫画| 欧美熟乱第一页| 国产一二精品视频| 亚洲一级电影视频| 久久蜜桃一区二区| 欧美色图激情小说| 成人影视亚洲图片在线| 亚洲午夜久久久久中文字幕久| 精品久久久久一区| 在线观看日韩精品| 国产毛片精品视频| 亚洲国产精品一区二区久久恐怖片| www激情久久| 欧美视频一区在线观看| 国产高清视频一区| 日韩专区在线视频| 中文字幕亚洲成人| 日韩久久久精品| 欧美亚洲国产bt| 成人综合在线视频| 麻豆freexxxx性91精品| 亚洲人成人一区二区在线观看| 日韩欧美高清在线| 91久久精品午夜一区二区| 国产一区二区三区蝌蚪| 午夜欧美电影在线观看| 1区2区3区国产精品| 久久久亚洲高清| 91麻豆精品国产91久久久| 91毛片在线观看| 高清在线不卡av| 麻豆精品在线观看| 偷拍日韩校园综合在线| 亚洲色图一区二区| 国产日韩成人精品| 精品国产a毛片| 欧美日韩国产影片| 欧洲一区二区三区在线| www.亚洲免费av| 国产成人激情av| 久久99在线观看| 亚洲chinese男男1069| 亚洲欧美视频在线观看| 国产精品麻豆一区二区 | 国产不卡视频一区二区三区| 全国精品久久少妇| 性做久久久久久免费观看欧美| 亚洲日本一区二区三区| 国产女主播一区| 欧美精品一区二区精品网| 91精品国产综合久久久久久久久久| 日本精品一级二级| 色综合色综合色综合| 99久久夜色精品国产网站| 国产丶欧美丶日本不卡视频| 美女精品一区二区| 日本aⅴ免费视频一区二区三区| 亚洲成人免费观看| 午夜精品影院在线观看| 亚洲国产日韩一区二区| 亚洲综合视频在线| 亚洲一区国产视频| 亚洲国产日产av| 午夜电影久久久| 日韩中文字幕一区二区三区| 亚洲成av人片| 日韩精品一级二级| 日本一不卡视频| 精品在线视频一区| 国产成人在线免费| 成人免费毛片a| 一本大道av一区二区在线播放| 91麻豆蜜桃一区二区三区| 91福利在线播放| 欧美理论在线播放| 日韩午夜精品视频| 精品国产区一区| 久久久久一区二区三区四区| 久久免费美女视频| 中文字幕中文字幕在线一区| 亚洲欧美另类综合偷拍| 一区二区日韩电影| 美女视频网站久久| 国产白丝精品91爽爽久久| 99精品视频中文字幕| 欧美日韩一区二区在线观看视频 | 九九国产精品视频|