?? input_nsga_maxspec
字號:
# Input file for the GA Toolbox
# Author: Kumara Sastry
# Date: April, 2006
#
#
# GA type: SGA or NSGA
#
NSGA
#
# Number of decision variables
#
3
#
# For each decision variable, enter:
# decision variable type, Lower bound, Upper bound
# Decision variable type can be double or int
#
double -5.0 5.0
double -5.0 5.0
double -5.0 5.0
#
# Objectives:
# Number of objectives
# For each objective enter the optimization type: Max or Min
#
2
Min
Min
#
# Constraints:
# Number of constraints
# For each constraint enter a penalty weight
#
0
#
# General parameters: If these parameters are not entered default
# values will be chosen. However you must enter
# "default" in the place of the parameter.
# [population size]
# [maximum generations]
# [replace proportion]
#
400
250
0.9
#
# Niching (for maintaining multiple solutions)
# To use default setting type "default"
# Usage: Niching type, [parameter(s)...]
# Valid Niching types and optional parameters are:
# NoNiching
# Sharing [niching radius] [scaling factor]
# RTS [Window size]
# DeterministicCrowding
#
# When using NSGA, it must be NoNiching (OFF).
#
NoNiching
#
# Selection
# Usage: Selection type, [parameter(s)...]
# To use the default setting type "default"
#
# Valid selection types and optional parameters are:
# RouletteWheel
# SUS
# TournamentWOR [tournament size]
# TournamentWR [tournament size]
# Truncation [# copies]
#
# When using NSGA, it can be neither SUS nor RouletteWheel.
#
TournamentWOR 2
#
# Crossover
# Crossover probability
# To use the default setting type "default"
#
# Usage: Crossover type, [parameter(s)...]
# To use the default crossover method type "default"
# Valid crossover types and optional parameters are
# OnePoint
# TwoPoint
# Uniform [genewise swap probability]
# SBX [genewise swap probability][order of the polynomial]
#
0.9
SBX 0.5 10
#
# Mutation
# Mutation probability
# To use the default setting type "default"
#
# Usage: Mutation type, [parameter(s)...]
# Selective
# Polynomial [order of the polynomial]
# Genewise [sigma for gene #1][sigma for gene #2]...[sigma for gene #ell]
#
0.1
Polynomial 20
#
# Scaling method
# To use the default setting type "default"
#
# Usage: Scaling method, [parameter(s)...]
# Valid scaling methods and optional parameters are:
# NoScaling
# Ranking
# SigmaScaling [scaling parameter]
#
NoScaling
#
# Constraint-handling method
# To use the default setting type "default"
#
# Usage: Constraint handling method, [parameters(s)...]
# Valid constraint handling methods and optional parameters are
# NoConstraints
# Tournament
# Penalty [Linear|Quadratic]
#
NoConstraints
#
# Local search method
# To use the default setting type "default"
#
# Usage: localSearchMethod, [maxLocalTolerance], [maxLocalEvaluations],
# [initialLocalPenaltyParameter], [localUpdateParameter],
# [lamarckianProbability], [localSearchProbability]
#
# Valid local search methods are: NoLocalSearch and SimplexSearch
#
# For example, SimplexSearch 0.001000 20 0.500000 2.000000 0.000000 0.000000
NoLocalSearch
#
# Stopping criteria
# To use the default setting type "default"
#
# Number of stopping criterias
#
# If the number is greater than zero
# Number of generation window
# Stopping criterion, Criterion parameter
#
# Valid stopping criterias and the associated parameters are
# NoOfEvaluations, Maximum number of function evaluations
# FitnessVariance, Minimum fitness variance
# AverageFitness, Maximum value
# AverageObjective, Max/Min value
# ChangeInBestFitness, Minimum change
# ChangeInAvgFitness, Minimum change
# ChangeInFitnessVar, Minimum change
# ChangeInBestObjective, Minimum change
# ChangeInAvgObjective, Minimum change
# NoOfGuysInFirstFront (NSGA only), Minimum number
# ChangeInNoOfFronts (NSGA only), Minimum change
# BestFitness (SGA with NoNiching only), Maximum value
#
0
#
# Load the initial population from a file or not
# To use the default setting type "default"
#
# Usage: Load population (0|1)
#
# For example, if you want random initialization type 0
# On the other and if you want to load the initial population from a
# file, type
# 1 <population file name> [0|1]
#
# Valid options for "Load population" are 0/1
# If you type "1" you must specify the name of the file to load the
# population from. The second optional parameter which indicates
# whether to evaluate the individuals of the loaded population or not.
0
# Save the evaluated individuals to a file
#
# To use default setting type "default".
#
# Here by default all evaluated individuals are stored and you will be
# asked for a file name later when you run the executable.
#
# Usage: Save population (0|1)
# For example, if you don't want to save the evaluated solutions type 0
# On the other and if you want to save the evaluated solutions
# 1 <save file name>
#
# Note that the evaluated solutions will be appended to the file.
#
# Valid options for "Save population" are 0/1
# If you type "1" you must specify the name of the file to save the
# population to.
1 evaluatedSolutions.txt
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -