亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? crossvalidate.m

?? 一個國外大學(xué)開發(fā)的SVM工具包
?? M
字號:
function [cost,costs,output] = crossvalidate(model, X,Y, L, estfct,combinefct, corrected,trainfct,simfct)% Estimate the model performance of a model with [$ l$] -fold crossvalidation%% >> cost = crossvalidate({Xtrain,Ytrain,type,gam,sig2}, Xval, Yval)% >> cost = crossvalidate( model, Xval, Yval)% % The data is once permutated randomly, then it is divided into L% (by default 10) disjunct sets. In the i-th (i=1,...,l) iteration,% the i-th set is used to estimate the performance ('validation% set') of the model trained on the other l-1 sets ('training% set'). At last, the l (denoted by L) different estimates of the% performance are combined (by default by the 'mean'). The% assumption is made that the input data are distributed% independent and identically over the input space. As additional% output, the costs in the different folds ('costs') and all% residuals ('ec') of the data are returned:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval)% % By default, this function will call the training (trainlssvm) and% simulation (simlssvm) algorithms for LS-SVMs. However, one can% use the validation function more generically by specifying the% appropriate training and simulation function. Some commonly used criteria are:% % >> cost = crossvalidate(model, Xval, Yval, 10, 'misclass', 'mean', 'corrected')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mse', 'mean', 'original')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mae', 'median', 'corrected')% % Full syntax% %     1. Using LS-SVMlab with the functional interface:% % >> [cost, costs, ec] = crossvalidate({X,Y,type,gam,sig2,kernel,preprocess},Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         X             : Training input data used for defining the LS-SVM and the preprocessing%         Y             : Training output data used for defining the LS-SVM and the preprocessing%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         Xval          : N x d matrix with the inputs of the data used for cross-validation%         Yval          : N x m matrix with the outputs of the data used for cross-validation%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     2. Using the object oriented interface:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the LS-SVM model%         Xval          : Nt x d matrix with the inputs of the validation points used in the procedure%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     3. Using other modeling techniques::% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction, trainfct, simfct)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : l x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the model%         Xval          : Nt x d matrix with the inputs of the validation points used%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'%         trainfct      : Function used to train the model%         simfct        : Function used to simulate test data with the model% % See also:% validate, leaveoneout, leaveoneout_lssvm, trainlssvm, simlssvm% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% initialisation and defaults%if size(X,1)~=size(Y,1), error('X and Y have different number of datapoints'); end[nb_data,y_dim] = size(Y);% LS-SVMlabeval('model = initlssvm(model{:});',' ');eval('L;','L=min(ceil(model.nb_data/4),10);');eval('estfct;','estfct=''mse'';');eval('combinefct;','combinefct=''mean'';');eval('trainfct;','trainfct=''trainlssvm'';');eval('simfct;','simfct=''simlssvm'';');eval('corrected;','corrected=''original'';');%% make a random permutation of the data%px = zeros(size(X));py = zeros(size(Y));if L==nb_data, p = 1:nb_data; else p = randperm(nb_data); endfor i=1:nb_data,  px(i,:) = X(p(i),:);  py(i,:) = Y(p(i),:);end;block_size = floor(nb_data/L);%%initialize: no incremental  memory allocation%err = zeros(L,1);corr2 = zeros(L,1);costs = zeros(L,1);output = zeros(size(Y));%%% start loop over l validations%for l = 1:L,    % divide in data and validation set, trainings data set is a copy  % of permutated_data, validation set is just a logical index   if l==L,    train = [1:block_size*(l-1)];    validation = block_size*(l-1)+1:nb_data;  else    train = [1:block_size*(l-1) block_size*l+1:nb_data];    validation = block_size*(l-1)+1:block_size*l;  end    % lets invert this...eXtreme cv  %validation = [1:block_size*(l-1) block_size*l+1:nb_data];  %train = block_size*(l-1)+1:block_size*l;  %disp([num2str(l) ': |trainset|' num2str(length(train)) ' & |test| ' num2str(length(validation))]);      %costs(l) = validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);  [costs(l), modell,output(p(validation),:)] = ...      validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);    %  % calculate correction term 2: MSE(f_data, error_wholedata)  % try to reuse the previously calculated model  %  if corrected(1) =='c',    eval('errors = feval(simfct, modell, px) - py;corr2(l) = feval(estfct, errors);',...	 'corr2(l) = validate(model, px(train,:), py(train,:), px, py,estfct, trainfct, simfct);');  endend % end loop over l validations%%% misclassifications%sc = find(costs~=inf & costs~=NaN);ff=zeros(size(costs)); ff(sc)=costs(sc);costs=ff;sc = find(corr2~=inf & corr2~=NaN);ff=zeros(size(corr2)); ff(sc)=corr2(sc);corr2=ff;%% calculate the final costs%if corrected(1)=='c',  % calculate correction term 1: MSE(f_wholedata, error_wholedata)  corr1 = validate(model,X, Y,  X, Y,  estfct, trainfct, simfct);  if corr1==inf | corr2==NaN, corr1=0; end  cost = feval(combinefct, costs)+corr1-feval(combinefct,corr2);else  cost = feval(combinefct, costs);end;	  fprintf('\n');	%file = [num2str(cost) '_costsLSSVM_{' num2str(model.gam(1)) ',' num2str(model.kernel_pars(1)) '}.mat'];%save L1costs costs;

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲精品成a人| 狠狠色丁香久久婷婷综合丁香| 亚洲成a人在线观看| 另类欧美日韩国产在线| caoporn国产一区二区| 国产精品久久久久aaaa樱花| 中文字幕视频一区| 美女视频黄 久久| 欧美无砖专区一中文字| 欧美极品少妇xxxxⅹ高跟鞋| 麻豆精品一区二区综合av| 欧美亚洲国产一区二区三区va| 国产视频一区二区三区在线观看| 日本vs亚洲vs韩国一区三区 | 久久婷婷成人综合色| 亚洲永久精品国产| www.av精品| 国产女人18毛片水真多成人如厕 | 色婷婷综合激情| 国产欧美日韩在线观看| 久久电影国产免费久久电影| 欧美影片第一页| 亚洲美女精品一区| 91香蕉视频mp4| 国产精品久久久久久妇女6080 | 精品国产免费人成电影在线观看四季 | 色94色欧美sute亚洲13| 国产精品青草综合久久久久99| 欧美96一区二区免费视频| 欧洲av一区二区嗯嗯嗯啊| 亚洲欧美国产高清| 91亚洲男人天堂| 亚洲欧美日韩国产成人精品影院| 色综合天天综合在线视频| 国产精品久久久久精k8| 99热这里都是精品| 亚洲美女屁股眼交| 欧美日韩一级片网站| 视频一区在线播放| 日韩一级成人av| 国产综合久久久久久鬼色| 久久婷婷久久一区二区三区| 国产高清久久久| 国产一区二区三区不卡在线观看| 日韩免费观看高清完整版| 国产在线播放一区| 国产精品亲子乱子伦xxxx裸| 成人av免费网站| 一区二区三区在线视频播放| 欧美日韩精品专区| 蜜桃在线一区二区三区| 国产三级欧美三级日产三级99| 国产成人精品免费看| 亚洲麻豆国产自偷在线| 欧美日韩亚洲综合一区二区三区| 日本免费新一区视频| 久久久www成人免费毛片麻豆| 成人美女视频在线看| 一区二区免费看| 欧美成人午夜电影| 99久精品国产| 日韩av一级电影| 中文成人综合网| 91麻豆精品91久久久久久清纯 | 欧美日韩亚洲不卡| 久久99久久久欧美国产| 亚洲三级在线看| 6080日韩午夜伦伦午夜伦| 国产精品538一区二区在线| 中文字幕在线观看一区| 欧美美女黄视频| 成人综合在线视频| 日本午夜一区二区| 国产精品私人自拍| 欧美一区二区女人| 91视频精品在这里| 韩国在线一区二区| 亚洲国产另类av| 国产精品视频你懂的| 欧美一级电影网站| 在线看国产日韩| 粉嫩一区二区三区性色av| 日韩精品乱码av一区二区| 中文字幕不卡在线观看| 日韩一级片在线播放| 91官网在线免费观看| 国产成人夜色高潮福利影视| 日本成人在线网站| 亚洲免费高清视频在线| 亚洲国产精品v| 精品免费日韩av| 欧美裸体一区二区三区| 97久久精品人人澡人人爽| 国产成人日日夜夜| 激情综合五月天| 日韩精品福利网| 亚洲图片欧美色图| 亚洲精品乱码久久久久久黑人| 久久久久高清精品| 精品福利在线导航| 日韩无一区二区| 欧美电影影音先锋| 欧美日韩久久久| 欧美日韩亚洲综合| 欧美三片在线视频观看| 欧美在线视频不卡| 欧美在线观看视频一区二区三区| 成人高清视频在线观看| 国产二区国产一区在线观看| 久久国产精品99久久久久久老狼| 日韩电影在线观看网站| 亚洲国产cao| 亚洲成a人片在线观看中文| 亚洲亚洲人成综合网络| 午夜影院在线观看欧美| 亚洲777理论| 日韩激情一二三区| 免费成人结看片| 奇米888四色在线精品| 日本人妖一区二区| 精彩视频一区二区| 国产精品夜夜嗨| 成人蜜臀av电影| 在线观看视频欧美| 欧美三级日韩三级国产三级| 69久久99精品久久久久婷婷| 日韩一区二区三区免费看| 欧美白人最猛性xxxxx69交| 久久久久青草大香线综合精品| 久久亚洲欧美国产精品乐播| 国产日韩精品久久久| 亚洲九九爱视频| 亚洲成人在线观看视频| 美女在线一区二区| 成人午夜激情在线| 在线精品视频小说1| 欧美一区二区三区免费视频| 日韩欧美www| 中文字幕一区在线| 亚洲成人免费观看| 精品一区二区在线观看| 成人h版在线观看| 欧美日免费三级在线| 精品国产一区二区三区久久影院| 国产精品视频看| 亚洲bt欧美bt精品777| 狠狠狠色丁香婷婷综合激情| 99re这里都是精品| 欧美美女一区二区三区| 中文字幕国产一区二区| 亚洲成人在线观看视频| 国产精品456露脸| 欧美亚洲国产bt| 久久影院午夜片一区| 一区二区三区成人| 精品系列免费在线观看| 9l国产精品久久久久麻豆| 欧美日韩电影一区| 欧美国产禁国产网站cc| 亚洲午夜国产一区99re久久| 国产精品一区二区免费不卡| 欧美色区777第一页| 国产精品美女久久久久aⅴ国产馆| 亚洲国产视频a| 成人精品在线视频观看| 6080日韩午夜伦伦午夜伦| 中文字幕在线观看不卡| 免费精品99久久国产综合精品| 国产毛片精品国产一区二区三区| 欧美专区日韩专区| 国产精品久久综合| 狠狠色2019综合网| 6080亚洲精品一区二区| 一区二区三区中文字幕精品精品| 国产精品一二三| 日韩一级免费一区| 亚洲成人资源网| 色综合中文字幕国产| 26uuu国产电影一区二区| 首页综合国产亚洲丝袜| 91黄色免费看| 最新国产精品久久精品| 国产乱一区二区| 日韩免费视频一区二区| 三级在线观看一区二区| 欧美在线免费视屏| 亚洲人成精品久久久久| 国产精品系列在线播放| 日韩午夜激情视频| 免费成人美女在线观看| 日韩一区二区电影在线| 免费久久99精品国产| 日韩一级大片在线观看| 美女www一区二区| 日韩一级片在线播放| 久久91精品国产91久久小草| 日韩一级高清毛片| 国产一区二区不卡在线| 亚洲精品一区二区三区蜜桃下载| 玖玖九九国产精品|