亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? bay_modoutclass.m

?? 一個(gè)國(guó)外大學(xué)開發(fā)的SVM工具包
?? M
字號(hào):
function [Pplus, Pmin, bay,model] = bay_modoutClass(model,X,priorpos,type,nb,bay)% Estimate the posterior class probabilities of a binary classifier using Bayesian inference%% >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2}, Xt)% >> [Ppos, Pneg] = bay_modoutClass(model, Xt)% % Calculate the probability that a point will belong to the% positive or negative classes taking into account the uncertainty% of the parameters. Optionally, one can express prior knowledge as% a probability between 0 and 1, where prior equal to 2/3 means% that the  prior positive class probability is 2/3 (more likely to% occur than the negative class).% For binary classification tasks with a 2 dimensional input space,% one can make a surface plot by replacing Xt by the string 'figure'.% % Full syntax% %     1. Using the functional interface:% % >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2,kernel, preprocess}, Xt)% >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2,kernel, preprocess}, Xt, prior)% >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2,kernel, preprocess}, Xt, prior, type)% >> [Ppos, Pneg] = bay_modoutClass({X,Y,'classifier',gam,sig2,kernel, preprocess}, Xt, prior, type, nb)% >> bay_modoutClass({X,Y,'classifier',gam,sig2, kernel, preprocess}, 'figure')% >> bay_modoutClass({X,Y,'classifier',gam,sig2, kernel, preprocess}, 'figure', prior)% >> bay_modoutClass({X,Y,'classifier',gam,sig2, kernel, preprocess}, 'figure', prior, type)% >> bay_modoutClass({X,Y,'classifier',gam,sig2, kernel, preprocess}, 'figure', prior, type, nb)% %       Outputs    %         Ppos    : Nt x 1 vector with probabilities that testdata Xt belong to the positive class%         Pneg    : Nt x 1 vector with probabilities that testdata Xt belong to the negative(zero) class%       Inputs    %         X        : N x d matrix with the inputs of the training data%         Y        : N x 1 vector with the outputs of the training data%         type     : 'function estimation' ('f') or 'classifier' ('c')%         gam      : Regularization parameter%         sig2     : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*) : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         Xt(*)    : Nt x d matrix with the inputs of the test data%         prior(*) : Prior knowledge of the balancing of the training data (or [])%         type(*)  : 'svd'(*), 'eig', 'eigs' or 'eign'%         nb(*)    : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation%%     2. Using the object oriented interface:% % >> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt)% >> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt, prior)% >> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt, prior, type)% >> [Ppos, Pneg, bay, model] = bay_modoutClass(model, Xt, prior, type, nb)% >> bay_modoutClass(model, 'figure')% >> bay_modoutClass(model, 'figure', prior)% >> bay_modoutClass(model, 'figure', prior, type)% >> bay_modoutClass(model, 'figure', prior, type, nb)% %       Outputs    %         Ppos     : Nt x 1 vector with probabilities that testdata Xt belong to the positive class%         Pneg     : Nt x 1 vector with probabilities that testdata Xt belong to the negative(zero) class%         bay(*)   : Object oriented representation of the results of the Bayesian inference%         model(*) : Object oriented representation of the LS-SVM model%       Inputs    %         model    : Object oriented representation of the LS-SVM model%         Xt(*)    : Nt x d matrix with the inputs of the test data%         prior(*) :Prior knowledge of the balancing of the training data (or [])%         type(*)  : 'svd'(*), 'eig', 'eigs' or 'eign'%         nb(*)    : Number of eigenvalues/eigenvectors used in the eigenvalue decomposition approximation% % See also:%   bay_lssvm, bay_optimize, bay_errorbar, ROC% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab% default handlingif iscell(model),  model = trainlssvm(model);endif (model.type(1)~='c'),   error('this moderated output only possible for classification...'); endeval('type;','type=''svd'';');eval('nb;','nb=model.nb_data;');if ~(strcmpi(type,'svd') | strcmpi(type,'eig') | strcmpi(type,'eigs') | strcmpi(type,'eign')),  error('Eigenvalue decomposition via ''svd'', ''eig'', ''eigs'' or ''eign''...');endif strcmpi(type,'eign')  warning('The resulting errorbars are most probably not very usefull...');  endeval('priorpos;','priorpos = .5*ones(model.y_dim,1);');if isempty(priorpos), priorpos = .5*ones(model.y_dim,1); endif ~isstr(X) & size(X,2)~=model.x_dim,   error('dimension datapoints is not equal to dimension of trainingspoints...');endif ~isstr(X),      eval('[Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type,nb,bay);',...       '[Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type,nb);');  % plot the curve including error barselse  if (model.x_dim==2 & model.y_dim==1),    grain = 25;    Xr = postlssvm(model,model.xtrain);    disp(' COMPUTING PLOT OF MODERATED OUTPUT');    % make grid    Xmin = min(Xr,[],1);    Xmax = max(Xr,[],1);    Xs1 = (Xmin(1)):((Xmax(1)-Xmin(1))/grain):(Xmax(1));    Xs2 = (Xmin(2)):((Xmax(2)-Xmin(2))/grain):(Xmax(2));    grain = length(Xs1);        [XX,YY] = meshgrid(Xs1,Xs2);    l = size(XX,1)*size(XX,2);    X = [reshape(XX,l,1) reshape(YY,l,1)];    % compute moderated output     eval('[Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type,nb,bay);',...	 '[Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type,nb);');        figure;    hold on;    if isempty(model.kernel_pars),            title(['LS-SVM_{\gamma=' num2str(model.gam(1)) ...             '}^{' model.kernel_type(1:3) '}, with moderated output' ...             ' P_{pos} indicated by surface plot']);    else      title(['LS-SVM_{\gamma=' num2str(model.gam(1)) ', \sigma^2=' num2str(model.kernel_pars(1)) ...             '}^{' model.kernel_type(1:3) '}, with moderated output' ...             ' P_{pos} indicated by surface plot']);    end    xlabel('X_1');    ylabel('X_2');    zlabel('Y');    surf(Xs1,Xs2,reshape(Pplus,grain,grain));            % plot datapoints    s = find(model.ytrain(:,1)>0);    pp = plot3(Xr(s,1),Xr(s,2),ones(length(s),1) ,'*k');    s = find(model.ytrain(:,1)<=0);    pn = plot3(Xr(s,1),Xr(s,2),ones(length(s),1) ,'sk');    legend([pp pn],'positive class','negative class');    shading interp;    colormap cool;    axis([Xmin(1) Xmax(1) Xmin(2) Xmax(2)]);    %colorbar  else    error(['cannot make a plot, give points to estimate confidence bounds instead...']);  endendfunction [Pplus, Pmin, bay] = bay_modoutClassIn(model,X,priorpos,type, nb, bay)% multiclass moderated output: recursive callsif (model.y_dim>1),   %error('moderated output only possible for single class...');   for i=1:model.y_dim,    mff = model;    mff.y_dim=1;     mff.ytrain=model.ytrain(:,i);    mff.alpha = model.alpha(:,i);    mff.b = model.b(i);    mff.code='original';    mff.preprocess = 'original';    [Py(:,i), Pplus(:,i), Pmin(:,i), bay{i}] = bay_modoutClass(mff,X,priorpos(i),type,nb);  end  returnend%% evaluate LS-SVM in trainpoints, latent variables%Psv = latentlssvm(model,postlssvm(model,model.xtrain));eval('Pymp = mean(Psv(find(Psv>0))));','Pymp=1;');eval('Pymn = mean(Psv(find(Psv<=0)));','Pymp=-1;');%model.latent  = 'no';Py = latentlssvm(model,X);nD = size(X,1);% previous inferenceeval('[FF1, FF2, FF3, bay] = bay_lssvm(model,1,type,nb);');% kernel matricesomega = kernel_matrix(model.xtrain,model.kernel_type, model.kernel_pars);theta = kernel_matrix(model.xtrain,model.kernel_type, model.kernel_pars,X);oo = ones(1,model.nb_data)*omega;Zc = eye(model.nb_data) - ones(model.nb_data,1)*ones(1,model.nb_data)./model.nb_data;Diagmatrix = (1/bay.mu - 1./(bay.zeta*bay.eigvals+bay.mu));for i=1:nD,  kxx(i,1) = feval(model.kernel_type, X(i,:),X(i,:), model.kernel_pars);end% positive class  Mplusindex = (model.ytrain(:,1)>0);  Nplus = sum(Mplusindex);  Oplus = omega(:,Mplusindex);  Oplusplus = omega(Mplusindex, Mplusindex);  thetaplus = theta(Mplusindex,:);    for i =1:nD,    thetapluse(i,:) = (theta(:,i) - (1/Nplus)*sum(Oplus,2))'*Zc*bay.Rscores;  end    term1 = kxx - 2/(Nplus)*sum(thetaplus,1)';  term2 = Nplus^-2 *sum(sum(Oplusplus));  term3 = thetapluse.^2 * Diagmatrix;  var_plus = (term1 + term2)./bay.mu - term3;    % negative class  Mminindex = model.ytrain(:,1)<=0;  Nmin = sum(Mminindex);  Omin = omega(:,Mminindex);  Ominmin = omega(Mminindex, Mminindex);  thetamin = theta(Mminindex,:);    for i=1:nD,    thetamine(i,:) = (theta(:,i) - (1/Nmin)*sum(Omin,2))'*Zc*bay.Rscores;  end  term1 = kxx - 2/(Nmin)*sum(thetamin,1)';  term2 = (Nmin^-2)*sum(sum(Ominmin));  term3 = thetamine.^2*Diagmatrix;    var_min = (term1+term2)./bay.mu-term3;    % Ppos, Pmin, resfor i=1:nD,      pdfplus = priorpos   * normpdf(Py(i),Pymp,sqrt(1/bay.zeta+var_plus(i)));  pdfmin = (1-priorpos)* normpdf(Py(i),Pymn,sqrt(1/bay.zeta+var_min(i)));  som = pdfmin+pdfplus;  Pplus(i,1) = pdfplus./som;  Pmin(i,1) = pdfmin./som;end

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲影视在线播放| 国产高清亚洲一区| 日日夜夜免费精品| 午夜激情综合网| 日本少妇一区二区| 国产精品影视在线| jlzzjlzz欧美大全| 精品视频一区二区不卡| 日韩欧美成人午夜| 国产精品第四页| 亚洲第一狼人社区| 国内久久婷婷综合| 91免费小视频| 久久综合成人精品亚洲另类欧美 | 正在播放亚洲一区| 久久这里只有精品6| 亚洲伊人伊色伊影伊综合网| 国内不卡的二区三区中文字幕| 成人教育av在线| 91精品国产欧美日韩| 怡红院av一区二区三区| 国产在线视频一区二区| 欧洲精品在线观看| 国产精品不卡在线| 日韩理论片在线| 日韩不卡一区二区| 色综合色狠狠综合色| 欧美精品一区二区三区很污很色的| 亚洲欧洲综合另类在线| 国产99久久久国产精品潘金网站| 欧美性大战久久久久久久 | 国产亚洲成av人在线观看导航| 亚洲欧美另类久久久精品2019| 国产精品综合av一区二区国产馆| 欧美日韩美少妇 | 国内成+人亚洲+欧美+综合在线 | 91视频在线观看免费| 久久久91精品国产一区二区三区| 香蕉久久一区二区不卡无毒影院 | 亚洲激情网站免费观看| voyeur盗摄精品| 亚洲欧美一区二区在线观看| 欧美裸体一区二区三区| 最新中文字幕一区二区三区| 国产麻豆视频一区| 久久久久久久久久久久电影 | 亚洲免费观看高清完整版在线观看 | 麻豆精品久久久| 91麻豆精品国产91久久久使用方法 | 欧美亚洲国产一卡| 亚洲午夜影视影院在线观看| 欧美视频在线一区二区三区| 一区二区在线看| 在线播放中文字幕一区| 免费的成人av| 日本一区二区三区四区| 99国产精品99久久久久久| 亚洲女与黑人做爰| 欧美日韩中文字幕精品| 久久国产乱子精品免费女| 久久美女艺术照精彩视频福利播放| 成人午夜看片网址| 亚洲黄色片在线观看| 欧美不卡一区二区三区四区| 国产成人一级电影| 一级中文字幕一区二区| 91精品国产福利| 欧美一区二区不卡视频| 粉嫩aⅴ一区二区三区四区五区| 亚洲精品五月天| 久久久一区二区三区| 国产高清久久久| 中文字幕永久在线不卡| 在线不卡中文字幕| 成人一级片在线观看| 亚洲观看高清完整版在线观看| 精品国产1区二区| 欧美亚洲另类激情小说| 国产成人精品午夜视频免费| 午夜精品久久久久久久久久| 亚洲国产精华液网站w| 欧美久久一二区| 日本韩国欧美国产| 丁香激情综合国产| 精品一区二区综合| 美脚の诱脚舐め脚责91 | 欧美日韩aaa| 在线中文字幕不卡| 色综合咪咪久久| 国产999精品久久久久久| 精品午夜一区二区三区在线观看| 亚洲国产欧美一区二区三区丁香婷| 欧美激情中文不卡| 国产欧美视频一区二区三区| 日韩一级黄色大片| 欧美一级理论片| 欧美一区二区三区四区在线观看| 成人黄色777网| 成人夜色视频网站在线观看| 国产一区二区日韩精品| 国产精品一区二区三区乱码 | 久久午夜电影网| 久久免费精品国产久精品久久久久| 日韩精品中文字幕一区二区三区 | 在线观看91视频| 欧美中文字幕久久| 欧美日韩美女一区二区| 在线成人免费观看| 精品欧美久久久| 久久久青草青青国产亚洲免观| xf在线a精品一区二区视频网站| 久久夜色精品国产欧美乱极品| 久久久国产午夜精品 | 亚洲一二三四区| 亚洲观看高清完整版在线观看| 天天色 色综合| 国产成人精品免费| 色欧美片视频在线观看| 制服视频三区第一页精品| 精品国产百合女同互慰| 亚洲三级在线看| 久久国内精品视频| 99久久夜色精品国产网站| 欧美午夜精品一区| 久久亚洲精品小早川怜子| ㊣最新国产の精品bt伙计久久| 亚洲18影院在线观看| 国产91精品入口| 6080亚洲精品一区二区| 国产精品高潮呻吟| 久久精品理论片| 一本久久a久久免费精品不卡| 欧美日韩免费观看一区二区三区| 久久日一线二线三线suv| 亚洲国产精品一区二区www在线| 国产a视频精品免费观看| 欧美精品vⅰdeose4hd| 亚洲免费观看高清| 国产成人在线免费| 7777精品伊人久久久大香线蕉超级流畅 | 美女视频黄免费的久久| 色呦呦国产精品| 国产日本欧洲亚洲| 日本成人在线看| 欧美日韩成人一区| 亚洲成人免费电影| 91极品视觉盛宴| 一区二区三区视频在线看| 99久久久精品免费观看国产蜜| 国产精品久久午夜夜伦鲁鲁| 国产一区二区在线观看免费| 日韩美女在线视频| 国产精品一二三四五| 精品国产乱码久久久久久1区2区| 老司机精品视频线观看86 | 国产成人在线视频网址| 久久久久国产精品麻豆ai换脸| 日本不卡视频在线| 日韩久久久精品| 国产成人综合精品三级| 国产精品视频一二三区| 高清成人免费视频| 亚洲欧美经典视频| 91精选在线观看| 韩国欧美国产1区| 国产精品久久久久久久久搜平片 | 色婷婷精品久久二区二区蜜臀av | 国产激情视频一区二区三区欧美| 久久精品在这里| 精品无码三级在线观看视频| 91精品国产色综合久久| 国产综合色在线视频区| 中文字幕av一区二区三区| 欧亚洲嫩模精品一区三区| 日韩电影免费在线| 中文字幕第一区二区| 这里是久久伊人| 99热精品一区二区| 麻豆专区一区二区三区四区五区| 中文字幕精品一区二区精品绿巨人 | 波多野结衣精品在线| 日韩高清一区在线| 国产精品美女久久久久aⅴ国产馆 国产精品美女久久久久av爽李琼 国产精品美女久久久久高潮 | 久久久久久久久99精品| 在线亚洲高清视频| 国产成人啪免费观看软件| 三级欧美在线一区| 中文字幕一区二区三区四区 | 欧美一区午夜精品| 91免费版pro下载短视频| 国产综合久久久久影院| 亚洲成人资源在线| 亚洲欧洲成人精品av97| 精品日韩在线观看| 欧美一二三区在线| 欧美一级久久久久久久大片| 欧美综合一区二区| 91成人网在线| 色呦呦网站一区| 色狠狠色噜噜噜综合网|