?? fmd.c
字號:
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
PARTICULAR PURPOSE.
Copyright (c) 2002 Microsoft Corporation
Module Name: FMD.CPP
Abstract: FLASH Media Driver Interface Samsung K9F2808UOB NAND Flash Chip
on AT-Rise development board.
Notes: Currently, *only* the CE 3.0 (and earlier) power management logic
is implemented (i.e. the PowerUp() and PowerDown() APIs).
Environment: As noted, this media driver works on behalf of the FAL to directly
access the underlying FLASH hardware. Consquently, this module
needs to be linked with FAL.LIB to produce the device driver
named FLASHDRV.DLL.
-----------------------------------------------------------------------------*/
#include "fmd.h"
//#include "s2410.h"
#include "cfnand.h"
#include "loader.h"
#include "2410lib.h"
#include "2410addr.h"
/*
#define READ_REGISTER_USHORT(p) (p)
//#define WRITE_REGISTER_USHORT(p, v) (*(volatile PUSHORT)(p)) = (v) 直接使用應該沒問題
#define READ_REGISTER_ULONG(p) (p)
#define WRITE_REGISTER_USHORT(p, v) (p) = (v)
/*
eboot下操作寄存器是虛擬地址,u241mon下直接操作寄存器地址,下面的函數使用寄存器地址時會出現異常終止
// Use Macros here to avoid extra over head for c function calls
#define READ_REGISTER_USHORT(p) (*(volatile PUSHORT) (p))
#define WRITE_REGISTER_USHORT(p, v) (*(volatile PUSHORT)(p)) = (v)
#define READ_REGISTER_ULONG(p) (*(volatile PULONG) (p))
*/
// Registers
//volatile PUSHORT pNFReg;
volatile PUSHORT pNFCONF;
volatile PUSHORT pNFCMD;
volatile PUSHORT pNFADDR;
volatile PUSHORT pNFDATA;
volatile PUSHORT pNFSTAT;
volatile PULONG pNFECC;
//volatile CLKPWRreg *v_s2410CLKPWR;
// Status bit pattern
#define STATUS_READY 0x40
#define STATUS_ERROR 0x01
// MACROS
/*
#define NF_CE_L() WRITE_REGISTER_USHORT(pNFCONF, (USHORT) (READ_REGISTER_USHORT(pNFCONF) & ~(1<<11)))
#define NF_CE_H() WRITE_REGISTER_USHORT(pNFCONF, (USHORT) (READ_REGISTER_USHORT(pNFCONF) | (1<<11)))
#define NF_CMD(cmd) WRITE_REGISTER_USHORT(pNFCMD, (USHORT) (cmd))
#define NF_ADDR(addr) WRITE_REGISTER_USHORT(pNFADDR, (USHORT) (addr))
#define NF_DATA_R() READ_REGISTER_USHORT(pNFDATA)
#define NF_DATA_W(val) WRITE_REGISTER_USHORT(pNFDATA, (USHORT) (val))
#define NF_STAT() READ_REGISTER_USHORT(pNFSTAT)
#define NF_RSTECC() WRITE_REGISTER_USHORT(pNFCONF, (USHORT) (READ_REGISTER_USHORT(pNFCONF) | (1<<12)))
#define NF_WAITRB() {while(!(NF_STAT() & 0x01)) ;}
#define NF_ECC() READ_REGISTER_ULONG(pNFECC)
* /
#define NF_CE_L() WRITE_REGISTER_USHORT(rNFCONF, (USHORT) (READ_REGISTER_USHORT(rNFCONF) & ~(1<<11)))
#define NF_CE_H() WRITE_REGISTER_USHORT(rNFCONF, (USHORT) (READ_REGISTER_USHORT(rNFCONF) | (1<<11)))
#define NF_CMD(cmd) WRITE_REGISTER_USHORT(rNFCMD, (USHORT) (cmd))
#define NF_ADDR(addr) WRITE_REGISTER_USHORT(rNFADDR, (USHORT) (addr))
#define NF_DATA_R() READ_REGISTER_USHORT(rNFDATA)
#define NF_DATA_W(val) WRITE_REGISTER_USHORT(rNFDATA, (USHORT) (val))
#define NF_STAT() READ_REGISTER_USHORT(rNFSTAT)
#define NF_RSTECC() WRITE_REGISTER_USHORT(rNFCONF, (USHORT) (READ_REGISTER_USHORT(rNFCONF) | (1<<12)))
//#define NF_WAITRB() {while(!(NF_STAT() & 0x01)) ;}
#define NF_WAITRB() {while(!(rNFSTAT & 1)); }
#define NF_ECC() READ_REGISTER_ULONG(rNFECC)
*/
// write from nboot by scyclone
#define NF_CE_L() {rNFCONF &= ~(1<<11);}
#define NF_CE_H() {rNFCONF |= (1<<11);}
#define NF_CMD(cmd) {rNFCMD = (cmd);}
#define NF_ADDR(addr) {rNFADDR = (addr);}
#define NF_DATA_R() rNFDATA
#define NF_DATA_W(d) {rNFDATA = (d);}
#define NF_STAT() rNFSTAT
#define NF_RSTECC() {rNFCONF |= (1<<12);}
#define NF_WAITRB() {while(!(rNFSTAT & 1));}
#define NF_ECC() rNFECC
// External function
BOOL ECC_CorrectData(LPBYTE pData, LPBYTE pExistingECC, LPBYTE pNewECC);
// Flags and pointers
#define BADBLOCKMARK 0x00
// VALIDADDR is 5 << 8
//
// Explain: 5 means the 6th byte in spare area (517 byte in the sector)
// Shift 8 bit to the left to form the correct address for 16bit port
//
#define VALIDADDR 0x05
#define OEMADDR 0x04 // 5th byte in spare area
// Reset the chip
//
void NF_Reset()
{
NF_CE_L();
NF_CMD(CMD_RESET);
NF_WAITRB();
NF_CE_H();
}
/*
Here is the statement from SamSung's K9F2808U0B datasheet:
All device locations are erased (FFh) except location where the invalid block(s)
information is written prior to shipping. The invalid block(s) status is defined
by the 6th byte in the spare area. Samsung makes sure that either the 1st or 2nd
page of every invalid block has non-FFh data at the column address of 517. Since
the invalid block information is also erasable in most cases, it is impossible to
recover the information once it has been erased.
Here is the logic we are taking:
If the block is invalid, non-FFh value in column address of 517, we don't use that
block anyway. Otherwise, the whole spare area is subject to use by our program. If
we found additional bad block later on, we don't necessary have to use column 517
to represent invalid block. We could use any of the 16 byte spare area.
But for simplicity, in our current implementation, we avoid to touch column 517. So
the we allocate SectorInfo as following:
- - - - - - - - - - - - - - - -
|R|R|R|R|O|V|R|R|E|E|E|E|E|E|E|E|
- - - - - - - - - - - - - - - -
Where Rs are reserved bytes used by the FAL
O is a byte for use by the OEM
V is a byte indicating if the block is valid (a.k.a. bad)
Es are bytes used for ECC
*/
/*
* NAND_ReadSectorInfo
*
* Read SectorInfo out of the spare area. The current implementation only handles
* one sector at a time.
*/
void NAND_ReadSectorInfo(SECTOR_ADDR sectorAddr, PSectorInfo pInfo)
{
// Chip enable
NF_CE_L();
// Write the command
NF_CMD(CMD_READ2);
// Write the address
NF_ADDR(0x00);
NF_ADDR(sectorAddr & 0xff);
NF_ADDR((sectorAddr >> 8) & 0xff);
NF_ADDR((sectorAddr >> 16) & 0xff);
// Wait for the Ready bit
NF_WAITRB();
// Read the SectorInfo data (we only need to read first 8 bytes)
pInfo->dwReserved1 = (DWORD) ((BYTE) NF_DATA_R()) << 24;
pInfo->dwReserved1 |= (DWORD) ((BYTE) NF_DATA_R()) << 16;
pInfo->dwReserved1 |= (DWORD) ((BYTE) NF_DATA_R()) << 8;
pInfo->dwReserved1 |= (DWORD) ((BYTE) NF_DATA_R());
// OEM byte
pInfo->bOEMReserved = (BYTE) NF_DATA_R();
// Read the bad block mark
pInfo->bBadBlock = (BYTE) NF_DATA_R();
// Second reserved field (WORD)
pInfo->wReserved2 = ((BYTE) NF_DATA_R() << 8);
pInfo->wReserved2 |= ((BYTE) NF_DATA_R());
NF_CE_H();
}
/*
* NAND_WriteSectorInfo
*
* Write SectorInfo out to the spare area. The current implementation only handles
* one sector at a time.
*/
BOOL NAND_WriteSectorInfo(SECTOR_ADDR sectorAddr, PSectorInfo pInfo)
{
BOOL bRet = TRUE;
// Chip enable
NF_CE_L();
// Write the command
// First, let's point to the spare area
NF_CMD(CMD_READ2);
NF_CMD(CMD_WRITE);
// Write the address
NF_ADDR(0x00);
NF_ADDR(sectorAddr & 0xff);
NF_ADDR((sectorAddr >> 8) & 0xff);
NF_ADDR((sectorAddr >> 16) & 0xff);
// Now let's write the SectorInfo data
//
// Write the first reserved field (DWORD)
NF_DATA_W( (pInfo->dwReserved1 >> 24) & 0xff );
NF_DATA_W( (pInfo->dwReserved1 >> 16) & 0xff );
NF_DATA_W( (pInfo->dwReserved1 >> 8 ) & 0xff );
NF_DATA_W( (pInfo->dwReserved1) & 0xff );
// Write OEM reserved flag
NF_DATA_W( (pInfo->bOEMReserved) );
// Write the bad block flag
NF_DATA_W( (pInfo->bBadBlock) );
// Write the second reserved field
NF_DATA_W( (pInfo->wReserved2 >> 8) & 0xff );
NF_DATA_W( (pInfo->wReserved2) );
// Issue the write complete command
NF_CMD(CMD_WRITE2);
// Check ready bit
NF_WAITRB();
// Check the status of program
NF_CMD(CMD_STATUS);
if(NF_DATA_R() & STATUS_ERROR) {
Uart_Printf("NAND_WriteSectorInfo() ######## Error Programming page %d!\n", sectorAddr);
bRet = FALSE;
}
NF_CE_H();
return bRet;
}
/*-----------------------------------------------------------------------------
* FMD Interface functions
*
*----------------------------------------------------------------------------*/
// FMD_Init
//
// Initialize the flash chip
// @@@@@@@@@@@@@@@@@@@@@@ modified by scyclone @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
// Note: Presently, the Flash size characteristics are hardcoded in CFNAND.H
// and are NOT stored in the registry. Refer to the StratFlash FMD in
// %WINCEROOT%\PUBLIC\COMMON\OAK\DRIVERS\BLOCK\... for an example of how
// to use the registry for storing this information.
//
/*
// CLOCK & POWER MANAGEMENT
#define rLOCKTIME (*(volatile unsigned *)0x4c000000) //PLL lock time counter
#define rMPLLCON (*(volatile unsigned *)0x4c000004) //MPLL Control
#define rUPLLCON (*(volatile unsigned *)0x4c000008) //UPLL Control
#define rCLKCON (*(volatile unsigned *)0x4c00000c) //Clock generator control
#define rCLKSLOW (*(volatile unsigned *)0x4c000010) //Slow clock control
#define rCLKDIVN (*(volatile unsigned *)0x4c000014) //Clock divider control
*/
/*
// NAND flash
#define rNFCONF (*(volatile unsigned *)0x4e000000) //NAND Flash configuration
#define rNFCMD (*(volatile U8 *)0x4e000004) //NADD Flash command
#define rNFADDR (*(volatile U8 *)0x4e000008) //NAND Flash address
#define rNFDATA (*(volatile U8 *)0x4e00000c) //NAND Flash data
#define rNFSTAT (*(volatile unsigned *)0x4e000010) //NAND Flash operation status
#define rNFECC (*(volatile unsigned *)0x4e000014) //NAND Flash ECC
#define rNFECC0 (*(volatile U8 *)0x4e000014)
#define rNFECC1 (*(volatile U8 *)0x4e000015)
#define rNFECC2 (*(volatile U8 *)0x4e000016)
*/
// FMD_Init 主要就是創建一塊虛擬內存,恰好是 CLOCK, NAND的寄存器地址,然后給NAND提供時鐘然后enable nand
PVOID FMD_Init(void)
{
#ifdef Debug2410mon
Uart_Printf("FMD_Init \r\n");
#endif
// Enable the clock to NAND controller
rCLKCON |= (1<<4);
//pNFReg = (PUSHORT) (NFC_BASE | 0x20000000);
pNFDATA = (PUSHORT)rNFDATA;
pNFCMD = (PUSHORT)rNFCMD;
pNFADDR = (PUSHORT)rNFADDR;
pNFSTAT = (PUSHORT)rNFSTAT;
pNFECC = (PULONG)rNFECC;
// Now we need enable the NAND Flash controller
rNFCONF = NFCONF_INIT;
return (PVOID)rNFCONF;
/*
v_s2410CLKPWR->rCLKCON |= (1<<4);
pNFCONF = pNFReg;
pNFCMD = (PUSHORT) ((PBYTE) pNFReg + 0x04);
pNFADDR = (PUSHORT) ((PBYTE) pNFReg + 0x08);
pNFDATA = (PUSHORT) ((PBYTE) pNFReg + 0x0C);
pNFSTAT = (PUSHORT) ((PBYTE) pNFReg + 0x10);
pNFECC = (PULONG) ((PBYTE) pNFReg + 0x14);
WRITE_REGISTER_USHORT(pNFCONF, NFCONF_INIT);
*/
}
// FMD_GetInfo
//
// Return the Flash information
//
BOOL FMD_GetInfo(PFlashInfo pFlashInfo)
{
pFlashInfo->flashType = NAND;
// OK, instead of reading it from the chip, we use the hardcoded numbers here.
pFlashInfo->dwNumBlocks = NUM_BLOCKS;
pFlashInfo->wSectorsPerBlock = PAGES_PER_BLOCK;
pFlashInfo->wDataBytesPerSector = SECTOR_SIZE;
return TRUE;
}
// FMD_ReadSector
//
// Read the content of the sector.
//
// startSectorAddr: Starting page address
// pSectorBuff : Buffer for the data portion
// pSectorInfoBuff: Buffer for Sector Info structure
// dwNumSectors : Number of sectors
//
typedef union _ECCRegVal
{
DWORD dwECCVal;
BYTE bECCBuf[4];
} ECCRegVal;
BOOL FMD_ReadSector(SECTOR_ADDR startSectorAddr, LPBYTE pSectorBuff, PSectorInfo pSectorInfoBuff, DWORD dwNumSectors)
{
DWORD i;
BYTE eccBuf[8];
ECCRegVal eccRegVal;
// RETAILMSG(1, (TEXT("FMD_ReadSector!\n")));
// RETAILMSG(1, (TEXT("startSectorAddr = %x, pSectorBuff = %x, pSectorInfoBuff = %x, dwNumSectors = %x\n"), startSectorAddr, pSectorBuff, pSectorInfoBuff, dwNumSectors));
// Sanity check
if (!pSectorBuff && !pSectorInfoBuff || dwNumSectors > 1) {
Uart_Printf("Invalid parameters!\r\n");
return FALSE;
}
NF_Reset();
if(!pSectorBuff) {
// We are reading spare only
NAND_ReadSectorInfo(startSectorAddr, pSectorInfoBuff);
// There is no ECC for the sector info, so the read always succeed.
return TRUE;
}
// Initialize ECC register
NF_RSTECC();
// Enable the chip
NF_CE_L();
// Issue command
NF_CMD(CMD_READ);
// Set up address
NF_ADDR(0x00);
NF_ADDR((startSectorAddr) & 0xff);
NF_ADDR((startSectorAddr >> 8) & 0xff);
NF_ADDR((startSectorAddr >> 16) & 0xff);
NF_WAITRB();
/* 暫時屏蔽 用C來讀NAND 數據
// BUGBUG, because Media Player for Pocket PC sometimes pass us un-aligned buffer
// we have to waste cycle here to work around this problem
if( ((DWORD) pSectorBuff) & 0x3) {
for(i=0; i<SECTOR_SIZE; i++) {
pSectorBuff[i] = (BYTE) NF_DATA_R();
}
}
else {
// The right way.
ReadPage512(pSectorBuff, pNFDATA); // eboot
//__RdPage512(pSectorBuff); nboot
}
*/
for(i=0; i<SECTOR_SIZE; i++)
pSectorBuff[i] = (BYTE) NF_DATA_R();
// Do the ECC thing here
// We read the ECC value from the ECC register pFNECC
eccRegVal.dwECCVal = NF_ECC();
// Read the SectorInfo data
if(pSectorInfoBuff) {
// Read the SectorInfo data (we only need to read first 8 bytes)
pSectorInfoBuff->dwReserved1 = (DWORD) ((BYTE) NF_DATA_R()) << 24;
pSectorInfoBuff->dwReserved1 |= (DWORD) ((BYTE) NF_DATA_R()) << 16;
pSectorInfoBuff->dwReserved1 |= (DWORD) ((BYTE) NF_DATA_R()) << 8;
pSectorInfoBuff->dwReserved1 |= (DWORD) ((BYTE) NF_DATA_R());
// OEM byte
pSectorInfoBuff->bOEMReserved = (BYTE) NF_DATA_R();
// Read the bad block mark
pSectorInfoBuff->bBadBlock = (BYTE) NF_DATA_R();
// Second reserved field (WORD)
pSectorInfoBuff->wReserved2 = ((BYTE) NF_DATA_R() << 8);
pSectorInfoBuff->wReserved2 |= ((BYTE) NF_DATA_R());
}
else {
// Advance the read pointer
for(i=0; i<sizeof(SectorInfo); i++) {
eccBuf[i] = (BYTE) NF_DATA_R();
}
}
// Verify the ECC values
//
// Read the ECC buffer
for(i=0; i<3; i++) {
eccBuf[i] = (BYTE) NF_DATA_R();
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -