亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tutdemo.m

?? 各種Matlab數學建模工具箱,方程求根,微積分和微分方程等以及一些數學建模競賽的源程序
?? M
字號:
echo off
%優化工具箱簡明教程
%TUTDEMO Tutorial for Optimization Toolbox.

%   Copyright (c) 1990-98 by The MathWorks, Inc.
%   $Revision: 1.12 $  $Date: 1997/11/29 01:23:27 $

echo on; clc
%TUTDEMO Tutorial for Optimization Toolbox.
%##########################################################################
%
%   This is a demonstration script-file for the OPTIMIZATION TOOLBOX 
%   It closely follows the Tutorial section of the users' guide
%
%   It consists of:
%           (1) unconstrained optimization example
%           (2) constrained optimization example 
%           (3) constrained example using gradients
%           (4) bounded example
%           (5) equality constrained example
%           (6) unconstrained example using user-supplied settings
%
%   All the principles outlined in this demonstration apply to the other
%   routines: attgoal, minimax, leastsq, fsolve.
%
%   The routines differ from the Tutorial Section examples in the manual 
%   only in that M-files for the objective functions have not been coded 
%   up. Instead the expression form of the syntax has been used where
%   functions to be minimized are expressed as MATLAB string variables. 
%
%##########################################################################

pause % Strike any key to continue (Note: use Ctrl-C to abort)
clc
%##########################################################################
%           DEMO 1: UNCONSTRAINED PROBLEM
%--------------------------------------------------------------------------
%
%   Consider initially the problem of finding a minimum to the function:
%
%                                2        2
%       f(x) = exp(x(1)) . (4x(1)  + 2x(2)  + 4x(1).x(2) + 2x(2) + 1)
%
%--------------------------------------------------------------------------
pause % Strike any key to continue

% The function to be minimized is

fun = 'exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1)';

pause % Strike any key to continue

% Take a guess at the solution

x0 = [-1 1];

pause % Strike any key to continue

% Use default parameters

options = [];

pause % Strike any key to start the optimization

[x, options] = fminu(fun, x0, options);

%  The optimizer has found a solution at:
x
pause % Strike any key to continue

%  The function value at the solution is:
options(8)
pause % Strike any key to continue

%  The total number of function evaluations was: 
options(10)
% Note: by entering the expression explicitly in a string using
% the variable 'x' we avoid having to write an M-file.

pause % Strike any key for next demo
clc
%##########################################################################
%           DEMO 2: CONSTRAINED PROBLEM
%--------------------------------------------------------------------------
%
%   Consider the above problem with two additional constraints:
%
%                                      2        2
%   minimize  f(x) = exp(x(1)) . (4x(1)  + 2x(2)  + 4x(1).x(2) + 2x(2) + 1)
%
%   subject to  1.5 + x(1).x(2) - x(1) - x(2) <= 0
%                   - x(1).x(2)               <= 10
%
%--------------------------------------------------------------------------
pause % Strike any key to continue

% Objective Function and constraints

funf = 'f = exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);';
fung = 'g = [1.5 + x(1)*x(2) - x(1) - x(2); -x(1)*x(2) - 10];';
fun = [funf fung];

pause % Strike any key to continue

% Take a guess at the solution

x0 = [-1 1];

pause % Strike any key to continue

% Use default parameters

options = [];

pause % Strike any key to start the optimization

[x, options] = constr(fun, x0, options);

% A solution to this problem has been found at:
x 
pause % Strike any key to continue

% The function value at the solution is: 
options(8)
pause % Strike any key to continue

% Both the constraints are active at the solution:
g = [1.5 + x(1)*x(2) - x(1) - x(2); - x(1)*x(2) - 10]
pause % Strike any key to continue

% The total number of function evaluations was: 
options(10)
pause % Strike any key for next demo
clc
%##########################################################################
%           DEMO 3: BOUNDED EXAMPLE
%--------------------------------------------------------------------------
%
%   Consider the above problem with additional bound constraints:
%
%                                      2        2
%   minimize  f(x) = exp(x(1)) . (4x(1)  + 2x(2)  + 4x(1).x(2) + 2x(2) + 1)
%
%   subject to  1.5 + x(1).x(2) - x(1) - x(2) <= 0
%                   - x(1).x(2)               <= 10
%
%          and                    x(1)        >= 0
%                                        x(2) >= 0
%
%--------------------------------------------------------------------------
pause % Strike any key to continue

% Objective Function and constraints

funf = 'f = exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);';
fung = 'g = [1.5 + x(1)*x(2) - x(1) - x(2); -x(1)*x(2) - 10];';
fun = [funf fung];

pause % Strike any key to continue

% Again, make a guess at the solution
  
x0 = [-1 1];

pause % Strike any key to continue

% Use default parameters

options = [];

pause % Strike any key to continue

% This time we will use the bounded syntax:
% X = CONSTR(`FUN', X0, OPTIONS, VLB, VUB) 

vlb = zeros(1,2); % Lower bounds X >= 0
vub = [];         % No upper bounds 

pause % Strike any key to start the optimization

[x, options] = constr(fun, x0, options, vlb, vub);

% The solution to this problem has been found at:
x 
pause % Strike any key to continue

% The function value at the solution is: 
options(8)
pause % Strike any key to continue

% The constraint values at the solution are:
g = [1.5 + x(1)*x(2) - x(1) - x(2); - x(1)*x(2) - 10]
pause % Strike any key to continue

% The total number of function evaluations was: 
options(10)
pause % Strike any key for next demo
clc
%##########################################################################
%           DEMO 4: USER-SUPPLIED GRADIENTS
%--------------------------------------------------------------------------
%  The above problem can be solved more efficiently and accurately if
%  gradients are supplied by the user. This demo shows how this may be
%  performed.
%
%  Again the problem is:
%                                      2        2
%   minimize  f(x) = exp(x(1)) . (4x(1)  + 2x(2)  + 4x(1).x(2) + 2x(2) + 1)
%
%   subject to  1.5 + x(1).x(2) - x(1) - x(2) <= 0
%                   - x(1).x(2)               <= 10
%
%--------------------------------------------------------------------------
pause % Strike any key to continue

% Objective function and constraints

funf = 'f = exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);';
fung = 'g = [1.5 + x(1)*x(2) - x(1) - x(2); -x(1)*x(2) - 10];';
fun = [funf fung];

pause % Strike any key to continue

% Make a guess at the solution:
 
x0 = [-1 1];

pause % Strike any key to continue

% Use default parameters

options = [];

pause % Strike any key to continue

% Partial derivatives

dfdx1 = 'exp(x(1))*(4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1)+4*exp(x(1))*(2*x(1)+x(2));'; 
dfdx2 = '4*exp(x(1))*(x(1)+x(2)+0.5);';
dfdg = '[x(2)-1, -x(2); x(1)-1, -x(1)];';
grad = ['df=[',dfdx1, dfdx2,']; dg=', dfdg];

pause % Strike any key to start the optimization

[x, options] = constr(fun, x0, options, [], [], grad);

% As before the solution to this problem has been found at:
x 
pause % Strike any key to continue

% The function value at the solution is: 
options(8)
pause % Strike any key to continue

% Both the constraints are active at the solution:
g = [1.5 + x(1)*x(2) - x(1) - x(2); - x(1)*x(2) - 10]
pause % Strike any key to continue

% The total number of function evaluations was: 
options(10)

pause % Strike any key for next demo
clc
%##########################################################################
%           DEMO 5: EQUALITY CONSTRAINED EXAMPLE
%--------------------------------------------------------------------------
%
%   Consider the above problem with an additional equality constraint:
%
%                                      2        2
%   minimize  f(x) = exp(x(1)) . (4x(1)  + 2x(2)  + 4x(1).x(2) + 2x(2) + 1)
%
%   subject to                    x(1) + x(2)  = 0
%               1.5 + x(1).x(2) - x(1) - x(2) <= 0
%                   - x(1).x(2)               <= 10
%
%--------------------------------------------------------------------------
pause % Strike any key to continue

% Objective function and constraints

funf = 'f = exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1);';
fung = 'g = [x(1) + x(2); 1.5 + x(1)*x(2) - x(1) - x(2); -x(1)*x(2) - 10];';
fun = [funf fung];

pause % Strike any key to continue

% Again, make a guess at the solution

x0 = [-1 1];

pause % Strike any key to continue

% This time we will indicate the number of equality constraints
% by setting options(13) to the number of constraints.  The equality
% constraints must be contained the in first few elements of g.

% One equality constraint

clear options
options(13) = 1;

pause % Strike any key to start the optimization

[x, options] = constr(fun, x0, options);

% The solution to this problem has been found at:
x 
pause % Strike any key to continue

% The function value at the solution is: 
options(8)
pause % Strike any key to continue

% The constraint values at the solution are:
g = [x(1) + x(2); 1.5 + x(1)*x(2) - x(1) - x(2); -x(1)*x(2) - 10]
pause % Strike any key to continue

% The total number of function evaluations was: 
options(10)

pause % Strike any key for next demo
clc
%##########################################################################
%           DEMO 6: CHANGING THE DEFAULT SETTINGS
%--------------------------------------------------------------------------
%
%   Consider the original unconstrained problem:
%
%                                      2        2
%   minimize  f(x) = exp(x(1)) . (4x(1)  + 2x(2)  + 4x(1).x(2) + 2x(2) + 1)
%
%   This time we will solve it more accurately by overriding the 
%   default termination criteria (OPTIONS(2) and OPTIONS(3)). 
%--------------------------------------------------------------------------
pause % Strike any key to continue

% The function to be minimized is

fun = 'exp(x(1)) * (4*x(1)^2 + 2*x(2)^2 + 4*x(1)*x(2) + 2*x(2) + 1)';

pause % Strike any key to continue

% Again, make a guess at the solution:

x0 = [-1 1];

pause % Strike any key to continue

% Override the default termination criteria:
clear options
options(2) = 1e-8;    % Termination tolerance on X
options(3) = 1e-8;    % Termination tolerance on F

pause % Strike any key to start the optimization

[x, options] = fminu(fun, x0, options);

%  The optimizer has found a solution at:
x
pause % Strike any key to continue

%  The function value at the solution is:
options(8)
pause % Strike any key to continue

%  The total number of function evaluations was: 
options(10)
%   Note: warning messages may be displayed because of problems
%   in the calculation of finite difference gradients at the 
%   solution point. They are an indication that tolerances are overly 
%   stringent, however, the optimizer always continues to make steps 
%   towards the solution. 

pause % Strike any key to continue

% If we want a tabular display of each iteration we can set
% options(1) = 1 as follows:

options = 1;  % Set display parameter to on, the others to default. 

pause % Strike any key to start the optimization

[x, options] = fminu(fun, x0, options);

%  The optimizer has found a solution at:
x
pause % Strike any key to continue

%  The function value at the solution is:
options(8)
pause % Strike any key to continue

%  The total number of function evaluations was: 
options(10)
%  At each major iteration the table displayed consists of: 
%           -   number of function values
%           -   function value
%           -   step length used in the line search
%           -   gradient in the direction of search
%

%------------------------------Demo End------------------------------------
pause % Strike any key for main menu
echo off
disp('End of demo')

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲电影一级黄| 国产精品欧美精品| 视频在线观看国产精品| 欧美日韩精品欧美日韩精品一综合| 国产精品免费人成网站| a4yy欧美一区二区三区| 亚洲视频在线一区二区| 一本在线高清不卡dvd| 亚洲女女做受ⅹxx高潮| 欧美日韩综合一区| 奇米影视一区二区三区| 亚洲精品在线观看网站| 粉嫩一区二区三区在线看| 国产精品福利一区二区三区| 92精品国产成人观看免费| 亚洲精品福利视频网站| 制服丝袜一区二区三区| 国产一区在线精品| 国产精品女同互慰在线看 | 青青草原综合久久大伊人精品优势 | 久草热8精品视频在线观看| 精品乱人伦小说| 99久久久久久| 日本亚洲免费观看| 国产网红主播福利一区二区| 99国产精品视频免费观看| 亚洲国产另类av| 久久久久久99久久久精品网站| 成人av午夜影院| 日本欧美一区二区在线观看| 国产日产欧产精品推荐色| 在线这里只有精品| 国产在线不卡视频| 夜夜亚洲天天久久| 精品久久久久av影院| 91香蕉国产在线观看软件| 热久久国产精品| 中文字幕亚洲成人| 日韩一级免费一区| 91香蕉视频在线| 激情综合网天天干| 日韩一区在线播放| 日韩亚洲欧美在线| 97成人超碰视| 精品在线观看免费| 午夜久久久久久| 国产精品进线69影院| 日韩一级黄色大片| 在线观看不卡一区| 国产精品99精品久久免费| 舔着乳尖日韩一区| 亚洲免费av网站| 国产亚洲综合色| 日韩一区二区在线观看视频| 色悠久久久久综合欧美99| 韩国毛片一区二区三区| 亚洲成a人v欧美综合天堂| 国产精品大尺度| 久久精品网站免费观看| 欧美成人在线直播| 欧美男人的天堂一二区| 91福利在线观看| 99精品热视频| 成人久久18免费网站麻豆 | 激情综合色丁香一区二区| 亚洲伊人伊色伊影伊综合网| 国产精品国产三级国产普通话三级 | 国产日韩欧美一区二区三区综合| 欧美日韩一区二区三区四区 | 在线亚洲免费视频| hitomi一区二区三区精品| 国产一区二区视频在线播放| 日本亚洲免费观看| 日韩不卡一二三区| 天堂av在线一区| 天堂av在线一区| 亚洲成av人片观看| 亚洲成人自拍偷拍| 亚洲第一成年网| 婷婷综合久久一区二区三区| 五月激情丁香一区二区三区| 亚洲国产精品天堂| 三级影片在线观看欧美日韩一区二区| 亚洲午夜在线电影| 日韩精品午夜视频| 久久国产成人午夜av影院| 国产麻豆一精品一av一免费| 高清beeg欧美| 91麻豆国产香蕉久久精品| 日本道色综合久久| 欧美日韩久久不卡| 欧美一区二区三区啪啪| 精品少妇一区二区三区免费观看| 2022国产精品视频| 中文无字幕一区二区三区| 《视频一区视频二区| 亚洲国产视频一区二区| 秋霞国产午夜精品免费视频| 国产精品自拍一区| 99久久精品免费观看| 91九色最新地址| 67194成人在线观看| 精品国产亚洲一区二区三区在线观看| 国产亚洲综合性久久久影院| 亚洲欧美偷拍另类a∨色屁股| 亚洲小少妇裸体bbw| 久久99久国产精品黄毛片色诱| 国产成a人亚洲精| 日本韩国欧美三级| 精品国产污污免费网站入口| 亚洲欧洲性图库| 日日夜夜免费精品| 不卡一区二区三区四区| 欧美四级电影在线观看| 精品美女被调教视频大全网站| 国产精品福利一区| 麻豆精品视频在线观看视频| 不卡的av在线播放| 欧美一区二区三区视频在线 | 一区二区三区中文免费| 久久99国产精品久久| 91黄色激情网站| 久久综合九色综合欧美亚洲| 亚洲另类一区二区| 国产电影精品久久禁18| 色婷婷精品大视频在线蜜桃视频| 日韩欧美123| 亚洲在线观看免费| 国产91在线观看| 欧美高清视频不卡网| 中文字幕日韩精品一区| 捆绑调教一区二区三区| 91免费视频网| 久久久久久久国产精品影院| 日韩精品一级二级| 一本色道亚洲精品aⅴ| 久久精品欧美一区二区三区麻豆| 午夜免费久久看| 91视频免费观看| 国产网站一区二区三区| 美女视频一区二区三区| 欧洲一区在线观看| 中文字幕在线一区二区三区| 日韩高清在线电影| 欧美少妇bbb| 亚洲乱码中文字幕综合| 国产美女精品在线| 精品国产亚洲在线| 蜜臀av国产精品久久久久| 精品1区2区3区| 亚洲欧美电影一区二区| 成人精品免费看| 日本一区二区免费在线观看视频 | 国产福利不卡视频| 日韩欧美一卡二卡| 午夜欧美一区二区三区在线播放| 99久久综合精品| 国产精品久久影院| 国产1区2区3区精品美女| 久久综合色一综合色88| 久久国产精品99久久久久久老狼| 欧美精品自拍偷拍| 午夜视频一区二区三区| 欧美体内she精视频| 亚洲国产精品一区二区久久恐怖片 | 日韩免费观看2025年上映的电影| 午夜av一区二区三区| 欧美三级日本三级少妇99| 亚洲精品久久久蜜桃| 日本高清不卡aⅴ免费网站| 一区二区视频免费在线观看| 99精品欧美一区二区蜜桃免费| 1000部国产精品成人观看| 91美女蜜桃在线| 亚洲最大的成人av| 欧美美女网站色| 日韩va亚洲va欧美va久久| 日韩视频一区二区三区在线播放| 另类专区欧美蜜桃臀第一页| 日韩一二三四区| 久久精品国产免费看久久精品| 精品国产一区二区三区av性色| 精品亚洲成a人| 国产欧美综合在线观看第十页| 成人免费视频网站在线观看| 亚洲精品午夜久久久| 欧美日韩国产不卡| 激情综合一区二区三区| 国产区在线观看成人精品| 91免费观看视频在线| 亚洲动漫第一页| 日韩亚洲欧美综合| 国产凹凸在线观看一区二区| 亚洲乱码中文字幕| 91精品国产麻豆| 国产精品一区一区三区| 亚洲视频 欧洲视频| 91精品在线观看入口| 国产精品77777竹菊影视小说| 最新不卡av在线|