亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? tfdemo2.m

?? matlab文件操作的典型 例子
?? M
字號:
%TFDEMO2 Non stationary signals

%	O. Lemoine - May 1996. 
%	Copyright (c) CNRS.

clc; zoom on; clf; 
echo on;

% Time and frequency localizations and the Heisenberg-Gabor inequality 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% The time and frequency localizations can be evaluated thanks to 
% the M-files loctime.m and locfreq.m of the Toolbox. The first one
% gives the average time center (tm) and the duration (T) of a signal,
% and the second one the average normalized frequency (num) and the 
% normalized bandwidth (B). For example, for a linear chirp with a 
% Gaussian amplitude modulation, we obtain :

sig=fmlin(256).*amgauss(256); 
subplot(211); plot(real(sig)); axis([1 256 -1 1]); grid;
xlabel('Time'); ylabel('Real part'); title('Signal in time');
dsp=fftshift(abs(fft(sig)).^2);
subplot(212); plot((-128:127)/256,dsp); grid;
xlabel('Normalized frequency'); ylabel('Squared modulus'); 
title('Energy spectrum');
[tm ,T]=loctime(sig) 
[num,B]=locfreq(sig)

% Press any key to continue...
 
pause; clc;

% One interesting property of this product T*B is that it is lower
% bounded : T * B >= 1. This constraint, known as the HEISENBERG-GABOR 
% INEQUALITY, illustrates the fact that a signal can not have 
% simultaneously an arbitrarily small support in time and in frequency.
% If we consider a Gaussian signal,

sig=amgauss(256); 
subplot(211); plot(real(sig)); axis([1 256 0 1]); grid;
xlabel('Time'); ylabel('Real part'); title('Signal in time');
dsp=fftshift(abs(fft(sig)).^2);
subplot(212); plot((-128:127)/256,dsp); grid;
xlabel('Normalized frequency'); ylabel('Squared modulus'); 
title('Energy spectrum');
[tm,T]=loctime(sig); 
[fm,B]=locfreq(sig);
[T,B,T*B]

% we can see that it minimizes the time-bandwidth product, and thus is 
% the most concentrated signal in the time-frequency plane.
%
% Press any key to continue...
 
pause; clc;

% Instantaneous frequency and group delay
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% The instantaneous frequency, defined for any analytic signal xa(t) as 
% the derivative of its phase, if(t) = 1/(2pi) d arg{xa(t)} / dt, can
% be a good solution to describe a signal simultaneously in time and in 
% frequency :

sig=fmlin(256); t=2:255; clf;
ifr=instfreq(sig); plotifl(t,ifr,sig(t)); grid;
axis([1 256 0 0.5]); xlabel('Time'); ylabel('Normalized frequency'); 
title('Instantaneous frequency estimation');
 
% As we can see from this plot, the instantaneous frequency shows with
% success the local frequency behavior as a function of time. 
%
% Press any key to continue...
 
pause;

% In a dual way, the local time behavior as a function of frequency can 
% be described by the GROUP DELAY : 
%	tx(nu) = -1/(2*pi) * d arg{Xa(nu)}/d nu.
% This quantity measures the average time arrival of the frequency nu. 
% For example, with signal sig of the previous example, we obtain :

fnorm=0:.05:.5; gd=sgrpdlay(sig,fnorm); plot(gd,fnorm); grid;
xlabel('Time'); ylabel('Normalized frequency'); 
title('Group delay estimation'); axis([1 256 0 0.5]);
 
% Press any key to continue...
 
pause; clc;

% Be careful of the fact that in general, instantaneous frequency and 
% group delay define two different curves in the time-frequency plane. 
% They are approximatively identical only when the time-bandwidth product 
% TB is large. To illustrate this point, let us consider a simple example.
% We calculate the instantaneous frequency and group delay of two signals, 
% the first one having a large TB product, and the second one a small TB
% product:

t=2:255; 
sig1=amgauss(256,128,90).*fmlin(256,0,0.5);
[tm,T1]=loctime(sig1); [fm,B1]=locfreq(sig1); T1*B1
ifr1=instfreq(sig1,t); f1=linspace(0,0.5-1/256,256);
gd1=sgrpdlay(sig1,f1); subplot(211); plot(t,ifr1,'*',gd1,f1,'-')
axis([1 256 0 0.5]); grid; xlabel('Time'); 
ylabel('Normalized frequency'); 

sig2=amgauss(256,128,30).*fmlin(256,0.2,0.4);
[tm,T2]=loctime(sig2); [fm,B2]=locfreq(sig2); T2*B2
ifr2=instfreq(sig2,t); f2=linspace(0.2,0.4,256);
gd2=sgrpdlay(sig2,f2); subplot(212); plot(t,ifr2,'*',gd2,f2,'-')
axis([1 256 0.2 0.4]); grid; xlabel('Time'); 
ylabel('Normalized frequency'); 
 
% On the first plot, the two curves are almost superimposed (i.e. the
% instantaneous frequency is the inverse transform of the group delay),
% whereas on the second plot, the two curves are clearly different.
%
% Press any key to continue...
 
pause; clc;

% Synthesis of a mono-component non stationary signal
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% One part of the Time-Frequency Toolbox is dedicated to the generation 
% of non stationary signals. In that part, three groups of M-files are 
% available:
%
%	- The first one allows to synthesize different amplitude
% modulations. These M-files begin with the prefix 'am'. 
%	- The second one proposes different frequency modulations.  These
% M-files begin with 'fm'. 
%	- The third one is a set of pre-defined signals. Some of them begin
% with 'ana' because these signals are analytic, other have special names.
% 
% The first two groups of files can be combined to produce a large class of
% non stationary signals, multiplying an amplitude modulation and a 
% frequency modulation. For example, we can multiply a linear frequency 
% modulation by a gaussian amplitude modulation :

fm1=fmlin(256,0,0.5); am1=amgauss(256);
sig1=am1.*fm1; clf; plot(real(sig1)); axis([1 256 -1 1]); 
xlabel('Time'); ylabel('Real part');
 
% By default, the signal is centered on the middle (256/2=128), and its
% spread is T=32. If you want to center it at an other position t0, just
% replace am1 by amgauss(256,t0). 
%
% Press any key to continue...
 
pause; clc; 

% A second example can be to multiply a pure frequency (constant frequency 
% modulation) by a one-sided exponential window starting at t=100 :

fm2=fmconst(256,0.2); am2=amexpo1s(256,100);
sig2=am2.*fm2; plot(real(sig2)); axis([1 256 -1 1]); 
xlabel('Time'); ylabel('Real part');
 
% Press any key to continue...
 
pause; 

% As a third example of mono-component non-stationary signal, we can 
% consider the M-file doppler.m : this function generates a modelization 
% of the signal received by a fixed observer from a moving target emitting 
% a pure frequency.

[fm3,am3]=doppler(256,200,4000/60,10,50);
sig3=am3.*fm3; plot(real(sig3)); axis([1 256 -0.4 0.4]); 
xlabel('Time'); ylabel('Real part');

% This example corresponds to a target (a car for instance) moving 
% straightly at the speed of 50 m/s, and passing at 10 m from the observer
% (the radar!). The rotating frequency of the engine is 4000 revolutions 
% per minute, and the sampling frequency of the radar is 200 Hz.
%
% Press any key to continue...
 
pause; clc; 

%   In order to have a more realistic modelization of physical signals, we
% may need to add some complex noise on these signals. To do so, two M-files
% of the Time-Frequency Toolbox are proposed : noisecg.m generates a complex
% white or colored Gaussian noise, and noisecu.m, a complex white uniform 
% noise. For example, if we add complex colored Gaussian noise on the signal
% sig1 with a signal to noise ratio of -10 dB,

noise=noisecg(256,.8);
sign=sigmerge(sig1,noise,-10); plot(real(sign)); 
Min=min(real(sign)); Max=max(real(sign));
xlabel('Time'); ylabel('Real part'); axis([1 256 Min Max]); 

% the deterministic signal sig1 is now almost imperceptible from the noise.
%
% Press any key to continue...
 
pause; clc; 


% Multi-component non stationary signals 
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  
% The notion of instantaneous frequency implicitly assumes that, at each
% time instant, there exists only a single frequency component. A dual
% restriction applies to the group delay : the implicit assumption is that
% a given frequency is concentrated around a single time instant. Thus, if
% these assumptions are no longer valid, which is the case for most of the
% multi-component signals, the result obtained using the instantaneous
% frequency or the group delay is meaningless.
%
% For example, let's consider the superposition of two linear frequency 
% modulations :

N=128; x1=fmlin(N,0,0.2); x2=fmlin(N,0.3,0.5);
x=x1+x2;

% At each time instant t, an ideal time-frequency representation should
% represent two different frequencies with the same amplitude. The results
% obtained using the instantaneous frequency and the group delay are of
% course completely different, and therefore irrelevant :

ifr=instfreq(x); subplot(211); plot(ifr);
xlabel('Time'); ylabel('Normalized frequency'); axis([1 N  0 0.5]);
fnorm=0:0.01:0.5; gd=sgrpdlay(x,fnorm); subplot(212); plot(gd,fnorm);
xlabel('Time'); ylabel('Normalized frequency'); axis([1 N  0 0.5]);
 
% So these one-dimensional representations, instantaneous frequency and 
% group delay, are not sufficient to represent all the non stationary 
% signals. A further step has to be made towards two-dimensional mixed 
% representations, jointly in time and in frequency. 
%
% Press any key to continue...
 
pause; clc; 

% To have an idea of what can be made with an time-frequency decomposition,
% let's anticipate the following and have a look at the result obtained 
% with the Short Time Fourier Transform :

tfrstft(x); 

% Here two 'time-frequency components' can be clearly seen, located around
% the locus of the two frequency modulations.
%

echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩精品一卡二卡三卡四卡无卡| 亚洲电影在线免费观看| 91视频91自| 免费欧美日韩国产三级电影| 国产精品视频看| 日韩精品在线一区二区| 欧洲日韩一区二区三区| 国产精品自拍在线| 日韩电影在线看| 亚洲麻豆国产自偷在线| 久久久久高清精品| 7777精品久久久大香线蕉| 91视频免费观看| 国产成人精品网址| 九九精品一区二区| 亚洲v中文字幕| 日韩码欧中文字| 久久精品人人做人人综合| 91精品黄色片免费大全| 色av一区二区| av电影在线观看完整版一区二区| 久久国产精品99精品国产| 亚洲午夜激情网页| 亚洲欧美视频在线观看| 国产欧美精品一区二区三区四区 | 一区二区三区精品在线| 国产女主播视频一区二区| 日韩女优视频免费观看| 欧美日韩精品一区二区三区四区| 99精品久久免费看蜜臀剧情介绍| 国产美女精品在线| 精品一区二区免费在线观看| 日韩高清在线电影| 五月天激情综合| 一区二区三区成人在线视频| 成人欧美一区二区三区黑人麻豆 | 亚洲欧美日韩在线不卡| 国产精品色呦呦| 久久免费美女视频| 精品99一区二区| 国产精品网站导航| 日韩一区和二区| 国产盗摄视频一区二区三区| 亚洲电影视频在线| 麻豆成人久久精品二区三区小说| 91麻豆精品国产91久久久久久久久 | 激情文学综合网| 日本少妇一区二区| 蜜臀av性久久久久蜜臀aⅴ四虎| 午夜视频久久久久久| 丝袜美腿亚洲综合| 亚洲成a人片综合在线| 午夜视频一区在线观看| 日韩精品欧美精品| 日本欧美肥老太交大片| 麻豆精品视频在线| 国产又黄又大久久| 成人在线综合网站| av资源网一区| 日本韩国一区二区三区视频| 91官网在线观看| 欧美日韩国产一级| 欧美一区二区国产| 久久综合九色综合欧美98| 欧美激情在线看| 亚洲另类在线制服丝袜| 亚洲电影欧美电影有声小说| 日韩精品福利网| 国内精品写真在线观看| av激情成人网| 欧美猛男男办公室激情| 精品国精品国产尤物美女| 久久五月婷婷丁香社区| 国产精品青草久久| 亚洲一区二区三区三| 免费精品视频最新在线| 国产精品一级二级三级| 91在线观看污| 91精品久久久久久久91蜜桃| 久久午夜色播影院免费高清| 综合激情成人伊人| 日本最新不卡在线| 成人精品一区二区三区中文字幕| 色一区在线观看| 日韩久久久精品| 国产精品久久午夜| 日韩和欧美的一区| 狠狠色丁香婷综合久久| 91免费小视频| 精品欧美乱码久久久久久| 最新不卡av在线| 久久狠狠亚洲综合| 97精品久久久午夜一区二区三区| 欧美老肥妇做.爰bbww| 中文字幕精品综合| 视频一区视频二区中文| 风流少妇一区二区| 67194成人在线观看| 中文av字幕一区| 久久成人免费网| 欧美在线观看18| 国产区在线观看成人精品 | 国产jizzjizz一区二区| 欧美丰满少妇xxxxx高潮对白| 国产亚洲欧美中文| 男女视频一区二区| 欧美性生活大片视频| 久久亚洲捆绑美女| 日本不卡1234视频| 欧美专区在线观看一区| 久久一区二区三区四区| 日韩午夜在线播放| 日韩一区二区三区四区五区六区 | 亚洲成人动漫在线观看| 成人午夜在线免费| 欧美成人午夜电影| 日韩成人精品在线观看| 欧美日韩一区二区三区免费看| 欧美国产国产综合| 黄色精品一二区| 欧美一卡二卡三卡四卡| 亚洲自拍另类综合| 一本到三区不卡视频| 国产亚洲欧美在线| 国产另类ts人妖一区二区| 日韩美一区二区三区| 亚洲大型综合色站| 欧美艳星brazzers| 一区二区三区毛片| 欧洲另类一二三四区| 日韩毛片精品高清免费| av在线播放一区二区三区| 国产欧美日韩中文久久| 国产一区二区三区日韩| 精品久久久久一区二区国产| 日韩精品成人一区二区三区| 欧美久久久久中文字幕| 亚洲一区二区三区不卡国产欧美| 91麻豆成人久久精品二区三区| 中文字幕欧美日本乱码一线二线| 国产suv精品一区二区三区| 精品国产乱码久久久久久影片| 久久丁香综合五月国产三级网站 | 欧美三级资源在线| 午夜一区二区三区视频| 欧美久久久久久久久| 亚洲国产精品精华液网站| 欧美日本在线看| 日本欧美一区二区| 欧美大片免费久久精品三p| 另类专区欧美蜜桃臀第一页| 精品精品国产高清一毛片一天堂| 男人的j进女人的j一区| 欧美成人精品福利| 国产69精品一区二区亚洲孕妇| 国产精品网站一区| 在线免费一区三区| 日韩激情一二三区| xnxx国产精品| 波多野结衣在线一区| 一区二区三区在线播| 欧美日韩国产在线播放网站| 日本成人中文字幕在线视频 | 欧美一二三区在线| 国产福利不卡视频| 亚洲精品视频免费看| 欧美精品亚洲一区二区在线播放| 麻豆精品一区二区综合av| 2021中文字幕一区亚洲| 成人免费黄色大片| 亚洲午夜一二三区视频| 欧美一级一级性生活免费录像| 国产一区二区久久| 亚洲视频 欧洲视频| 欧美三级三级三级爽爽爽| 毛片不卡一区二区| 中文字幕不卡在线观看| 欧美视频一区二区三区| 久久国产精品色婷婷| 成人欧美一区二区三区白人| 3atv一区二区三区| 成人激情av网| 日本成人中文字幕在线视频| 国产欧美日本一区二区三区| 欧美四级电影网| 国产精品资源在线看| 亚洲一区二区在线免费看| 国产suv精品一区二区6| 久久精品水蜜桃av综合天堂| 色综合久久综合网| 国内久久婷婷综合| 亚洲精品国产一区二区精华液| 欧美一级黄色大片| 91久久精品一区二区三区| 国产在线视频一区二区| 一区二区在线观看免费| 精品剧情v国产在线观看在线| 色婷婷久久久亚洲一区二区三区| 美女视频黄a大片欧美| 亚洲免费观看高清在线观看|