亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? tfdemo5.m

?? matlab文件操作的典型 例子
?? M
字號:
%TFDEMO5 Affine class time-frequency distributions.
%	Time-Frequency Toolbox demonstration.
%
%	See also TFDEMO.

%	O. Lemoine - July 1996. 
%	Copyright (c) CNRS.

zoom on; clf; 
echo on;

% The Affine class : presentation
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% This class gathers all the quadratic time-frequency representations 
% which are covariant by translation in time and dilation. The WVD is
% an element of the affine class, provided that we introduce an 
% arbitrary non-zero frequency nu0, and identify the scale with the 
% inverse of the frequency : a=nu0/nu.
% The choice of an element in the affine class can be reduced to the 
% choice of an affine correlation kernel PI(t,nu). When PI is a 
% two-dimensional low-pass function, it plays the role of an affine
% smoothing function which tries to reduce the interferences generated 
% by the WVD.
%
% The scalogram 
%"""""""""""""""
%  A first example of affine distribution is given by the scalogram,
% which is the squared modulus of the wavelet transform. It is the affine
% counterpart of the spectrogram. As illustrated in the following example,
% the tradeoff between time and frequency resolutions encountered with the
% spectrogram is also present with the scalogram.
%  We analyze a signal composed of two gaussian atoms, one with a low 
% central frequency, and the other with a high one, with the scalogram 
% (Morlet wavelet) :

sig=atoms(128,[38,0.1,32,1;96,0.35,32,1]);
clf; tfrscalo(sig);
% The result obtained brings to the fore dependency, with regard to the 
% frequency, of the smoothing applied to the WVD, and consequently of the
% resolutions in time and frequency.
%
% Press any key to continue...
 
pause; clf; 


% The affine smoothed pseudo Wigner distribution (ASPWVD)
%"""""""""""""""""""""""""""""""""""""""""""""""""""""""""
%  One way to overcome the tradeoff between time and frequency resolutions
% of the scalogram is, as for the smoothed-pseudo-WVD, to use a smoothing
% function which is separable in time and frequency. The resulting
% distribution is called the affine smoothed pseudo WVD. It allows a 
% flexible choice of time and scale resolutions in an independent manner 
% through the choice of two windows g and h. 

echo off
TFTBcontinue=1;
fprintf('The next step requires patience. Do you want to skip it ?\n');
while (TFTBcontinue==1),
 answer=upper(input('y or n : ','s'));
 TFTBcontinue=~strcmp(answer,'Y') & ~strcmp(answer,'N');
end;
echo on

if (answer=='N'),
%  As for the SPWVD, the ASPWVD allows a continuous passage from the 
% scalogram to the WVD, under the condition that the smoothing functions 
% g and h are gaussian. The time-bandwidth product then goes from 1 
% (scalogram) to 0 (WVD), with an independent control of the time and 
% frequency resolutions. This is illustrated in the following example :

set(gca,'visible','off');
M=movsc2wv(128,15);
movie(M,5);

% Here again, the WVD gives the best resolutions (in time and in frequency),
% but presents the most important interferences, whereas the scalogram gives
% the worst resolutions, but with nearly no interferences ; and the affine
% smoothed-pseudo WVD allows to choose the best compromise between these two
% extremes.
%
end;
% Press any key to continue...
pause; close

% The localized bi-frequency kernel (or affine Wigner) distributions
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%  A useful subclass of the affine class consists in characterization
% functions which are perfectly localized on power laws or logarithmic laws
% in their bi-frequency representation. The corresponding time-scale 
% distributions are known as the localized bi-frequency kernel distributions.
% 
% The Bertrand distribution
%"""""""""""""""""""""""""""
%  If we further impose to these distributions the a priori requirements of
% time localization and unitarity, we obtain the Bertrand distribution. This
% distribution satisfies many properties, and is the only localized
% bi-frequency kernel distribution which localizes perfectly the hyperbolic
% group delay signals. To illustrate this property, consider the signal 
% obtained using the file gdpower.m (taken for k=0), and analyze it with 
% the file tfrbert.m :

sig=gdpower(128);
tfrbert(sig,1:128,0.01,0.22,128,1);
% Note that the distribution obtained is well localized on the hyperbolic
% group delay, but not perfectly : this comes from the fact that the file
% tfrbert.m works only on a subpart of the spectrum, between two bounds fmin
% and fmax.
%
% Press any key to continue...
 
pause; 

% The D-Flandrin distribution 
%"""""""""""""""""""""""""""""
%  If we now look for a localized bi-frequency kernel distribution which is
% real, localized in time and which validates the time-marginal property, 
% we obtain the D-Flandrin distribution. It is the only localized 
% bi-frequency kernel distribution which localizes perfectly signals having 
% a group delay in 1/sqrt(nu). This can be illustrated as following :

sig=gdpower(128,1/2);
tfrdfla(sig,1:128,0.01,0.22,128,1);
% Here again, the distribution is almost perfectly localized.
%
% Press any key to continue...
 
pause; 

% The active Unterberger distribution
%"""""""""""""""""""""""""""""""""""""
%  Finally, the only localized bi-frequency kernel distribution which
% localizes perfectly signals having a group delay in 1/nu^2 is the active
% Unterberger distribution :

sig=gdpower(128,-1);
tfrunter(sig,1:128,'A',0.01,0.22,172,1);
% Press any key to continue...
 
pause; 

% Relation with the ambiguity domain
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%  When the signal under analysis can not be considered as narrow-band
% (i.e. when its bandwidth B is not negligible compared to its central
% frequency nu0), the narrow-band ambiguity function is no longer appropriate
% since the Doppler effect can not be approximated as a frequency-shift. We
% then consider a wide-band ambiguity function (WAF). It corresponds to 
% the wavelet transform of the signal x, whose mother wavelet is the signal
% x itself. It is then an affine correlation function, which measure the 
% similarity between the signal and its translated (in time) and dilated 
% versions. To see how it behaves on a practical example, let us consider an
% Altes signal :
	
sig=altes(128,0.1,0.45);
clf; ambifuwb(sig);

% The WAF is maximum at the origin of the ambiguity plane.  
%
% Press any key to continue...
 
pause; 
  
% Interference structure
%~~~~~~~~~~~~~~~~~~~~~~~~
%  The interference structure of the localized bi-frequency kernel 
% distributions can be determined thanks to the following geometric 
% argument : two points (t1,nu1) and (t2,nu2) belonging to the trajectory 
% on which a distribution is localized interfere on a third point 
% (ti,nui) which is necessarily located on the same trajectory.
%  To illustrate this interference geometry, let us consider the case of a
% signal with a sinusoidal frequency modulation :

[sig,ifl]=fmsin(128);

% The file plotsid.m allows one to construct the interferences of an affine
% Wigner distribution perfectly localized on a power-law group-delay
% (specifying k), for a given instantaneous frequency law (or the
% superposition of different instantaneous frequency laws). For example, if
% we consider the case of the Bertrand distribution (k=0),

plotsid(1:128,ifl,0);

% we obtain an interference structure completely different from the one
% obtained for the Wigner-Ville distribution (k=2) :
%
% press any key to continue...
 
pause;

plotsid(1:128,ifl,2);

% For the active Unterberger distribution (k=-1), the result is the
% following : 
%
% press any key to continue...
 
pause;

plotsid(1:128,ifl,-1);
 
% Press any key to continue...
 
pause; 

% The pseudo affine Wigner distributions
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
%   The affine Wigner distributions show great potential as flexible
% tools for time-varying spectral analysis. However, as some distributions of
% the Cohen's class, they present two major practical limitations : first the
% entire signal enters into the calculation of these distributions at every
% point (t,nu), and second, due to their nonlinearity, interference
% components arise between each pair of signal components. To overcome these
% limitations, a set of (smoothed) pseudo affine Wigner distributions has
% been introduced.
%  Here are two examples of such distributions, analyzed on a real 
% echolocation signal from a bat :

echo off
DirectoryStr='';
while (exist([DirectoryStr 'gabor.mat'])==0),
 fprintf('I can''t find %s\n', [DirectoryStr 'gabor.mat']);
 DirectoryStr=input('name of the directory where gabor.mat is : ','s');
end;
eval(['load ' DirectoryStr 'bat.mat']);
echo on

N=2048; sig=hilbert(bat(400+(1:N))');

% The affine smoothed pseudo Wigner distribution 
%------------------------------------------------

figure(1); tfrwv(sig,1:8:N,256); 
figure(2); tfrspaw(sig,1:8:N,2,24,0,0.1,0.4,256,1); 

% On the left, the WVD presents interference terms because of the
% non-linearity of the frequency modulation. On the right, the affine
% frequency smoothing operated by the affine smoothed pseudo Wigner
% distribution almost perfectly suppressed the interference terms.
%
% Press any key to continue...
 
pause; 

% The pseudo Bertrand distribution
%----------------------------------

figure(1); tfrbert(sig,1:8:N,0.1,0.4,256,1);
figure(2); tfrspaw(sig,1:8:N,0,32,0,0.1,0.4,256,1); 

% The first plot represents the Bertrand distribution. The approximate
% hyperbolic group delay law of the bat signal explains the good result
% obtained with this distribution (compared to the WVD). However, it
% remains some interference terms, which are almost perfectly canceled
% on the second plot (pseudo Bertrand distribution).
%
% Press any key to end this demonstration

pause; close;
echo off

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
久久九九久精品国产免费直播| 国产精品女主播av| 久久综合色8888| 中文字幕日本乱码精品影院| 性做久久久久久久久| 国产精品1024久久| 欧美老人xxxx18| 最近日韩中文字幕| 韩国成人在线视频| 91精品国产综合久久精品性色| 国产精品久久久久久久久图文区 | 国产精品天干天干在观线| 亚洲成人一区在线| 成人精品视频一区二区三区尤物| 日韩欧美视频在线| 亚洲成人资源在线| 91久久精品一区二区三区| 国产人久久人人人人爽| 免费高清不卡av| 欧美性生活久久| 亚洲欧美区自拍先锋| 国内精品国产成人国产三级粉色| 91精品久久久久久久91蜜桃| 亚洲国产乱码最新视频| 91蜜桃在线观看| 欧美激情中文字幕| 国产尤物一区二区| 精品久久久久久久久久久院品网 | 国产成人a级片| 欧美精品三级在线观看| 亚洲一二三四区| 欧美综合一区二区| 亚洲精品国产a久久久久久 | 欧美国产欧美综合| 国产一区二区三区四区五区入口| 日韩精品一区二区三区视频播放 | 欧美一级久久久久久久大片| 一区二区三区国产| 色综合激情五月| 一区二区三区精品在线观看| 色吧成人激情小说| 亚洲一区二区三区精品在线| 欧美色男人天堂| 一区二区三区 在线观看视频| 色综合天天性综合| 亚洲免费成人av| 91久久一区二区| 亚洲国产另类av| 欧美日韩精品欧美日韩精品| 夜夜爽夜夜爽精品视频| 欧美日韩免费电影| 青青草国产成人99久久| 精品欧美乱码久久久久久 | 国产成a人亚洲| 国产精品麻豆一区二区| 99国产精品99久久久久久| 亚洲欧美日韩国产综合| 欧美三级欧美一级| 久久99最新地址| 国产丝袜美腿一区二区三区| av在线播放一区二区三区| 亚洲视频狠狠干| 欧美日韩电影在线| 国产乱人伦偷精品视频不卡| 国产精品初高中害羞小美女文| 在线观看网站黄不卡| 日韩精品一级中文字幕精品视频免费观看| 91 com成人网| 国产剧情av麻豆香蕉精品| 亚洲精品成人天堂一二三| 欧美疯狂做受xxxx富婆| 国产成人综合在线观看| 亚洲免费资源在线播放| 日韩午夜在线观看视频| 国产精品18久久久久| 亚洲不卡在线观看| 日本一区二区三区高清不卡| 欧美在线短视频| 国产成a人无v码亚洲福利| 亚洲国产成人91porn| 久久精品免费在线观看| 欧美伊人精品成人久久综合97| 国产中文字幕一区| 亚洲一区二区中文在线| 欧美激情一区在线观看| 欧美日韩黄视频| 99视频在线观看一区三区| 久久精品国产精品亚洲红杏| 亚洲少妇最新在线视频| 久久免费的精品国产v∧| 色视频一区二区| 国产精品66部| 裸体歌舞表演一区二区| 亚洲欧美国产三级| 国产欧美精品国产国产专区| 欧美高清激情brazzers| 一本色道久久综合狠狠躁的推荐| 精品一区二区三区久久久| 亚洲一区二区在线观看视频| 国产精品久久久久婷婷| 久久综合久久99| 91麻豆精品国产91久久久使用方法 | 午夜精品123| 亚洲视频资源在线| 国产欧美一区二区精品性色超碰| 51精品国自产在线| 91官网在线免费观看| 成人免费视频app| 国产激情一区二区三区四区| 日韩av午夜在线观看| 亚洲成av人片| 亚洲成人综合视频| 亚洲图片一区二区| 一区二区在线观看视频| 国产精品盗摄一区二区三区| 久久中文娱乐网| 欧美videofree性高清杂交| 91精品国产综合久久久蜜臀粉嫩| 色悠久久久久综合欧美99| 972aa.com艺术欧美| 成人av影视在线观看| 国产精品夜夜嗨| 国产剧情一区二区| 国产黄色成人av| 国产精品一区不卡| 成a人片国产精品| www.一区二区| 99精品久久只有精品| 99精品在线观看视频| 91欧美激情一区二区三区成人| 91丨九色porny丨蝌蚪| 色又黄又爽网站www久久| 欧美自拍偷拍一区| 欧美人与性动xxxx| 欧美一区二区成人| 国产亚洲污的网站| 国产精品久久久久9999吃药| 国产精品久久精品日日| 亚洲精品成人悠悠色影视| 亚洲不卡一区二区三区| 美日韩一级片在线观看| 国产一区二区久久| 国产69精品久久99不卡| 91久久精品一区二区三| 日韩一区二区免费电影| 久久毛片高清国产| 亚洲欧美电影院| 日韩和欧美一区二区三区| 精品一区二区三区免费播放| 成人丝袜高跟foot| 欧美日韩一区小说| 精品国产一区a| 亚洲人被黑人高潮完整版| 天堂蜜桃一区二区三区| 激情六月婷婷综合| 91麻豆国产在线观看| 欧美一级欧美三级在线观看| 国产婷婷色一区二区三区四区| 夜夜嗨av一区二区三区| 久久精品国产99| 色一情一乱一乱一91av| 欧美一个色资源| 亚洲精品视频在线观看网站| 日本午夜一区二区| 99精品视频免费在线观看| 欧美一级在线免费| 国产精品超碰97尤物18| 日本在线观看不卡视频| 成人爱爱电影网址| 欧美一区二区三区在线观看视频 | 欧美另类z0zxhd电影| 国产欧美一区二区精品婷婷 | 国产成人小视频| 欧美绝品在线观看成人午夜影视| 欧美激情一区二区在线| 日本在线不卡一区| 色老头久久综合| 日本一区二区综合亚洲| 男女视频一区二区| 欧美网站一区二区| 国产精品福利一区二区| 黄色精品一二区| 91精品国产aⅴ一区二区| 亚洲丝袜美腿综合| 懂色一区二区三区免费观看| 日韩欧美精品在线| 亚洲国产va精品久久久不卡综合| 99久久精品99国产精品| 久久精品一区二区三区四区| 日本不卡123| 欧美精品一二三四| 亚洲午夜激情av| 91久久久免费一区二区| 成人免费一区二区三区在线观看| 国产精品综合网| 久久亚洲精华国产精华液| 日本午夜一区二区| 日韩亚洲电影在线| 日韩av中文在线观看| 欧美日韩国产a|