亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? tfdemo3.m

?? matlab文件操作的典型 例子
?? M
字號:
%TFDEMO3 Demonstration on linear time-frequency representations.  	 
%	Time-Frequency Toolbox demonstration.
%
%	See also TFDEMO.

%	O. Lemoine - May 1996. 
%	Copyright (c) CNRS.

clc; zoom on; 
echo on;

% The Short-Time Fourier Transform
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% In order to introduce time-dependency in the Fourier transform, a simple
% and intuitive solution consists in pre-windowing the signal x(u) around a
% particular time t, calculating its Fourier transform, and doing that for
% each time instant t. The resulting transform is called the Short-Time 
% Fourier Transform (STFT).
%
% Let us have a look at the result obtained by applying the STFT on a
% speech signal. The signal we consider contains the word 'GABOR' recorded 
% on 338 points with a sampling frequency of 1 kHz (with respect to the 
% Shannon criterion).

echo off
DirectoryStr='';
while (exist([DirectoryStr 'gabor.mat'])==0),
 fprintf('I can''t find %s\n', [DirectoryStr 'gabor.mat']);
 DirectoryStr=input('name of the directory where gabor.mat is : ','s');
end;
eval(['load ' DirectoryStr 'gabor.mat']);
echo on

time=0:337; 
clf; subplot(211); plot(time,gabor); xlabel('Time [ms]'); grid

% Now let us have a look at the Fourier transform of it :

dsp=fftshift(abs(fft(gabor)).^2); subplot(212); 
freq=(-169:168)/338*1000; plot(freq,dsp); xlabel('Frequency [Hz]'); grid

% We can not say from this representation what part of the word is
% responsible for that peak around 140 Hz. 
%
% Press any key to continue...
 
pause; clc;
 
% Now if we look at the squared modulus of the STFT of this signal, 
% using a hamming analysis window of 85 points, we can see some interesting
% features (the time-frequency matrix is loaded from the MAT-file because 
% it takes a long time to be calculated ; we represent only the frequency 
% domain where the signal is present) :
		
clf; tfrsp(gabor,1:338,256,tftb_window(61,'hanning'),1); 
% contour(time,(0:127)/256*1000,log10(tfr)); grid
xlabel('Time [ms]'); ylabel('Frequency [Hz]'); 
title('Squared modulus of the STFT of the word GABOR');

% The first pattern in the time-frequency plane, located between 30ms and
% 60ms, and centered around 150Hz, corresponds to the first syllable
% 'GA'. The second pattern, located between 150ms and 250ms, corresponds to
% the last syllable 'BOR', and we can see that its mean frequency is
% decreasing from 140Hz to 110Hz with time. Harmonics corresponding to these
% two fondamental signals are also present at higher frequencies, but with a
% lower amplitude.
%
% Press any key to continue...
 
pause; clc;
 
% To illustrate the tradeoff which exists for the STFT between time and 
% frequency resolutions, whatever is the short time analysis window h, we 
% consider two extreme cases : 
% - the first one corresponds to a perfect time resolution : the analysis 
% window h(t) is chosen as a Dirac impulse :

sig=amgauss(128).*fmlin(128); h=1;
tfrstft(sig,1:128,128,h);

% The signal is perfectly localized in time (a section for a given 
% frequency of the squared modulus of the STFT corresponds exactly to the 
% squared modulus of the signal), but the frequency resolution is null.     
%
% Press any key to continue...
 
pause; 

% - the second is that of perfect frequency resolution , obtained with a
% constant window :

h=ones(127,1);
tfrstft(sig,1:128,128,h);

% Here the STFT reduces to the Fourier transform (except on the sides, 
% because of the finite length of h), and does not provides any time 
% resolution.  
%    
% Press any key to continue...
 
pause; clc

% To illustrate the influence of the shape and length of the analysis
% window h, we consider two transient signals having the same gaussian
% amplitude and constant frequency, with different arrival times :

sig=atoms(128,[45,.25,32,1;85,.25,32,1],0);

% Here is the result obtained with a Hamming analysis window of 65 
% points :

h=tftb_window(65,'hamming');
tfrstft(sig,1:128,128,h);

% The frequency-resolution is very good, but it is almost impossible to
% discriminate the two components in time. 
%    
% Press any key to continue...
 
pause; clc

% If we now consider a short Hamming window of 17 points,

h=tftb_window(17,'hamming');
tfrstft(sig,1:128,128,h);

% the frequency resolution is poorer, but the time-resolution is 
% sufficiently good to distinguish the two components. 
%    
% Press any key to continue...
 
pause; clc; clf

% The Gabor Representation 
%~~~~~~~~~~~~~~~~~~~~~~~~~~
% The reconstruction (synthesis) formula of the STFT given in the 
% discrete case defines the Gabor representation. Let us consider the 
% Gabor coefficients of a linear chirp of N1=256 points at the critical 
% sampling case, and for a gaussian window of Ng=33 points :

N1=256; Ng=33; Q=1; % degree of oversampling.
sig=fmlin(N1); g=tftb_window(Ng,'gauss'); g=g/norm(g);
[tfr,dgr,h]=tfrgabor(sig,16,Q,g);

% (tfrgabor generates as first output the squared modulus of the Gabor
% representation, as second output the complex Gabor representation, and 
% as third output the biorthonormal window). When we look at the
% biorthonormal window h,

plot(h); axis([1 256 -0.3 0.55]); grid; title('Biorthonormal window'); 

% we can see how "bristling" this function is. 
%    
% Press any key to continue...
 
pause; clc

% The corresponding Gabor decomposition contains all the information about 
% sig, but is not easy to interpret :

t=1:16; f=linspace(0,0.5,8); imagesc(t,f,tfr(1:8,:));  grid
xlabel('Time'); ylabel('Normalized frequency'); axis('xy'); 
title('Squared modulus of the Gabor coefficients');

% Press any key to continue...
 
pause;

% If we now consider a degree of oversampling of Q=4 (there are four times
% more Gabor coefficients than signal samples), the biorthogonal function is
% smoother (the bigger Q, the closer h from g),

Q=4; [tfr,dgr,h]=tfrgabor(sig,32,Q,g);
plot(h); title('Biorthonormal window'); axis([1 256 -0.01 0.09]); grid; 

% press any key to continue...
 
pause; 

% and the Gabor representation is much more readable :

t=1:32; f=linspace(0,0.5,16); imagesc(t,f,tfr(1:16,:)); axis('xy'); 
xlabel('Time'); ylabel('Normalized frequency');  grid
title('Squared modulus of the Gabor coefficients');

% Press any key to continue...
 
pause; clc; 

% From atomic decompositions to energy distributions
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
% The spectrogram
%"""""""""""""""""
% If we consider the squared modulus of the STFT, we obtain a spectral
% energy density of the locally windowed signal x(u) h*(u-t), which 
% defines the spectrogram.
% To illustrate the resolution tradeoff of the spectrogram and its
% interference structure, we consider a two-component signal composed of 
% two parallel chirps :

sig=fmlin(128,0,0.4)+fmlin(128,0.1,0.5);
h1=tftb_window(23,'gauss'); figure(1); tfrsp(sig,1:128,128,h1);

h2=tftb_window(63,'gauss'); figure(2); tfrsp(sig,1:128,128,h2);

%print -deps EPS/At4fig2

% In these two cases, the signals sig1 and sig2 are not sufficiently 
% distant to have distinct terms in the time-frequency plane, whatever the 
% window length is. Consequently, interference terms are present, and 
% disturb the readability of the time-frequency representation. 
%
% Press any key to continue...
 
pause; clc; 

% If we consider more distant components,

sig=fmlin(128,0,0.3)+fmlin(128,0.2,0.5);
h1=tftb_window(23,'gauss'); figure(1); tfrsp(sig,1:128,128,h1);
h2=tftb_window(63,'gauss'); figure(2); tfrsp(sig,1:128,128,h2);

% the two auto-spectrograms do not overlap and no interference term
% appear. We can also see the effect of a short window (h1) and a long
% window (h2) on the time-frequency resolution. In the present case, the 
% long window h2 is preferable since as the frequency progression is not
% very fast, the quasi-stationary assumption will be correct over h2 (so 
% time resolution is not as important as frequency resolution in this case) 
% and the frequency resolution will be quite good ; whereas if the window 
% is short (h1), the time resolution will be good, which is not very useful, 
% and the frequency resolution will be poor.
%
% Press any key to continue...
 
pause; clc; close;

% The scalogram
%"""""""""""""""
% A similar distribution to the spectrogram can be defined in the wavelet
% case. The squared modulus of the continuous wavelet transform also 
% defines an energy distribution which is known as the scalogram.
% As for the wavelet transform, time and frequency resolutions of the
% scalogram are related via the Heisenberg-Gabor principle : time and
% frequency resolutions depend on the considered frequency. To illustrate
% this point, we represent the scalograms of two different signals. The
% M-file tfrscalo.m generates this representation. The chosen wavelet is a
% Morlet wavelet of 12 points. The first signal is a Dirac pulse at time
% t0=64 :

sig1=anapulse(128);
tfrscalo(sig1,1:128,6,0.05,0.45,64);

% This figure shows that the influence of the signal's behavior around 
% t=t0 is limited to a cone in the time-scale plane (which is more visible 
% if you choose the logarithmic scale is the menu) : it is "very" localized 
% around t0 for small scales (large frequencies), and less and less 
% localized as the scale increases (as the frequency decreases).
%
% Press any key to continue...
 
pause; clc; 

% The second signal is the sum of two sinusoids of different frequencies :

sig2=fmconst(128,.15)+fmconst(128,.35);
tfrscalo(sig2,1:128,6,0.05,0.45,128);
 
% Here again, we notice that the frequency resolution is clearly a function
% of the frequency : it increases with nu.
%
% Press any key to end this demonstration

pause;
echo off

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产自产v一区二区三区c| 欧美性受xxxx黑人xyx性爽| 日本欧美肥老太交大片| 日韩国产精品久久| 奇米影视在线99精品| 美女久久久精品| 日韩电影在线看| 亚洲美女免费视频| 欧美大片在线观看一区二区| 秋霞电影网一区二区| 奇米精品一区二区三区在线观看一| 亚洲国产一区二区三区| 日产精品久久久久久久性色| 日本韩国欧美在线| 国产亚洲人成网站| 精品一区二区三区在线播放视频| 欧美人伦禁忌dvd放荡欲情| 国产成人丝袜美腿| 国产不卡在线播放| 国产精品综合久久| 国产剧情一区二区| 美女高潮久久久| 蜜臀av性久久久久蜜臀av麻豆| 国产精品青草久久| 国产精品久久毛片a| 亚洲欧洲日韩女同| 欧美精品一区二区三区久久久| 99这里只有精品| 国产一区二区三区香蕉 | 亚洲美女精品一区| 日韩成人一级大片| www.激情成人| 欧美白人最猛性xxxxx69交| 久久综合色之久久综合| 亚洲女子a中天字幕| 久久99热狠狠色一区二区| zzijzzij亚洲日本少妇熟睡| 欧美视频一二三区| 国产精品卡一卡二| 久久精品国产亚洲高清剧情介绍| 日本精品一区二区三区高清| 欧美不卡一区二区| 日韩精品一区第一页| 91在线观看高清| 精品理论电影在线观看| 日韩不卡一区二区| 欧美日韩视频第一区| 日韩美女啊v在线免费观看| 六月丁香婷婷久久| 7777精品伊人久久久大香线蕉的| 亚洲视频1区2区| 色呦呦一区二区三区| 久久亚洲影视婷婷| 国产九色sp调教91| 久久精品夜色噜噜亚洲aⅴ| 洋洋成人永久网站入口| 国产精品一区二区x88av| 亚洲国产视频一区| 欧美成人女星排名| 欧美日韩一级黄| 99精品视频一区二区| 亚洲已满18点击进入久久| 国产欧美日韩精品一区| 精品国产第一区二区三区观看体验 | 亚洲一区二区视频| 亚洲精品水蜜桃| 亚洲欧洲三级电影| 国产精品丝袜久久久久久app| 国产精品女主播在线观看| 一区二区激情视频| 6080日韩午夜伦伦午夜伦| 韩国三级在线一区| √…a在线天堂一区| 欧美综合一区二区三区| 日产国产欧美视频一区精品| 国产精品久久777777| 日韩一区二区三区高清免费看看| 国产精品亚洲成人| 亚洲一区二区三区四区在线观看| 欧美电视剧免费观看| 欧美中文字幕一区| 国产精品一区二区男女羞羞无遮挡| 日韩福利电影在线| 日韩精品一二三四| 青娱乐精品视频| 久久av中文字幕片| 国产精品综合一区二区三区| 国产一区二区福利| av在线这里只有精品| a级高清视频欧美日韩| 日本道免费精品一区二区三区| 一本久久a久久精品亚洲| 色8久久精品久久久久久蜜| 在线看国产日韩| 日韩免费看网站| 国产精品情趣视频| 亚洲综合区在线| 精品一区二区三区在线观看| 夜夜精品视频一区二区| 91麻豆精品国产综合久久久久久| 成人动漫中文字幕| 狠狠色丁香久久婷婷综| 亚洲一区二区三区四区五区中文 | 激情综合网最新| 丝袜脚交一区二区| 国产麻豆日韩欧美久久| 99久久免费视频.com| 欧美伊人久久大香线蕉综合69| 欧美视频一区在线| 亚洲精品一区二区三区蜜桃下载| ㊣最新国产の精品bt伙计久久| 亚洲电影在线免费观看| 国产呦精品一区二区三区网站| 91在线精品秘密一区二区| 7777精品伊人久久久大香线蕉的 | 成人毛片在线观看| 欧美日韩高清一区二区三区| 国产香蕉久久精品综合网| 丝袜美腿亚洲一区二区图片| 99v久久综合狠狠综合久久| 日韩视频永久免费| 三级在线观看一区二区| 97久久超碰国产精品电影| www一区二区| 免费高清在线一区| 91精品国产美女浴室洗澡无遮挡| 中文字幕一区二区三区四区| 国产福利视频一区二区三区| 亚洲精品一区二区三区四区高清| 蜜桃av一区二区在线观看| 欧美日韩国产一区| 综合久久久久综合| 99国产欧美另类久久久精品| 国产精品美女久久久久久久久| 国产精品一区二区久久精品爱涩 | 奇米一区二区三区av| 91精品国产综合久久福利软件| 午夜电影一区二区| 91精品国产日韩91久久久久久| 日韩精品电影在线观看| 精品国精品国产| 99在线精品视频| 亚洲国产日韩一区二区| 日韩欧美第一区| 99久久777色| 婷婷开心激情综合| 国产欧美一区二区三区鸳鸯浴| 99精品热视频| 看片网站欧美日韩| 国产精品―色哟哟| 欧美午夜在线观看| 国产精品一区一区| 亚洲一区二区欧美| 国产欧美日韩激情| 日韩欧美一二三| 欧美日韩国产综合一区二区三区 | 亚洲国产精品成人综合 | 日本免费新一区视频| 国产精品毛片高清在线完整版| 欧美片网站yy| 色哟哟精品一区| 国产凹凸在线观看一区二区| 亚洲制服丝袜av| 国产精品不卡一区二区三区| 日韩欧美综合在线| 欧美丰满少妇xxxxx高潮对白| 国产一区高清在线| 毛片不卡一区二区| 日日夜夜精品视频免费| 亚洲天堂av老司机| 国产精品久久久久9999吃药| 精品欧美一区二区在线观看| 69成人精品免费视频| 欧美日韩国产美女| 欧美日韩欧美一区二区| 91成人免费电影| 欧美丝袜第三区| 欧美日韩亚洲丝袜制服| 欧美日韩国产一级| 欧美性xxxxxxxx| 日韩一级高清毛片| 日韩视频一区二区| 久久色.com| 最新日韩在线视频| 天天影视涩香欲综合网| 日本在线不卡一区| 国产精选一区二区三区| 国产99一区视频免费| 成人黄色在线网站| 欧美日韩一区三区| 日韩欧美国产麻豆| 亚洲欧洲日本在线| 香蕉av福利精品导航| 国产一区二区三区黄视频| 成人美女在线观看| 日韩视频国产视频| 亚洲精品国产一区二区精华液 | 69久久夜色精品国产69蝌蚪网| 欧美精品一区二区不卡| 亚洲色图色小说|