亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? faq.html

?? libsvm支持向量機(Support Vector Machine,簡稱SVM)。
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Wed,  8 Feb 2006 08:31:04 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(54)</li>
<ul><b>
<li><a
href="#/Q1:_Some_courses_which_have_used_libsvm_as_a_tool">Q1:_Some_courses_which_have_used_libsvm_as_a_tool</a>(1)</li>
<li><a
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(8)</li>
<li><a
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(3)</li>
<li><a
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(30)</li>
<li><a
href="#/Q5:_Graphic_Interface">Q5:_Graphic_Interface</a>(3)</li>
<li><a
href="#/Q6:_Java_version_of_libsvm">Q6:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q7:_Python_Interface">Q7:_Python_Interface</a>(4)</li>
<li><a
href="#/Q8:_MATLAB_Interface">Q8:_MATLAB_Interface</a>(1)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq1">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">What are changes in previous versions?</a></li>
<li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ?   </a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running without showing any output. What should I do?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
<li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
<li class="headlines_item"><a href="#f416">For some problem sets if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f421">I would like to try different random partition for cross validation, how could I do it ?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes longer time</a></li>
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
<li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
<li class="headlines_item"><a href="#f428">Why on windows sometimes grid.py fails?</a></li>
<li class="headlines_item"><a href="#f429">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
<li class="headlines_item"><a href="#f430">Is there a way to speed up the pow() function used in calculating polynomial kernels?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f702">On MS windows, why does python fail to load the dll file?</a></li>
<li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the dll file ?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
<li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors</a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q1:_Some_courses_which_have_used_libsvm_as_a_tool"></a>
<a name="faq1"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
<li>
<a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
SVM tutorial in machine learning
summer school, University of Chicago, 2005.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
<br/>                                                                                
<p>
In the package there is a README file which 
details all options, data format, and library calls.
The model selection tool and the python interface
have a separate README under the directory python.
The guide
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> shows beginners how to train/test their data.
The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
: a library for support vector machines</a> discusses the implementation of
libsvm in detail.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: What are changes in previous versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.

<p> You can download earlier versions 
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ?   </b></a>
<br/>                                                                                
<p>
Please cite the following document:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is as follows
<pre>
@Manual{CC01a,
  author =	 {Chih-Chung Chang and Chih-Jen Lin},
  title =	 {{LIBSVM}: a library for support vector machines},
  year =	 {2001},
  note =	 {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
The libsvm license ("the modified BSD license")
is compatible with many
free software licenses such as GPL. Hence, it is very easy to
use libsvm in your software.
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Project."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Project."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean?</b></a>
<br/>                                                                                
<br>optimization finished, #iter = 219
<br>nu = 0.431030
<br>obj = -100.877286, rho = 0.424632
<br>nSV = 132, nBSV = 107
<br>Total nSV = 132

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产凹凸在线观看一区二区| 三级久久三级久久| 亚洲国产精品成人久久综合一区| 精品国产3级a| 中文一区在线播放| 亚洲天堂网中文字| 亚洲午夜三级在线| 日韩精品一级中文字幕精品视频免费观看| 一区二区三区国产豹纹内裤在线 | 国产色产综合色产在线视频| 欧美va天堂va视频va在线| 26uuu国产日韩综合| 中文字幕在线一区二区三区| 一区二区三区国产豹纹内裤在线| 亚洲国产精品久久不卡毛片| 青青草97国产精品免费观看无弹窗版| 精品在线视频一区| 欧美视频一区二区在线观看| 欧美一区二区三区视频免费 | 国产精品综合一区二区三区| 99热99精品| 日韩免费一区二区| 亚洲午夜羞羞片| 国产精品一级在线| 欧美日本视频在线| 国产精品国产三级国产aⅴ无密码| 午夜影院久久久| www.色精品| 欧美激情综合五月色丁香| 日韩在线观看一区二区| 成人一区二区三区视频| 久久伊人中文字幕| 另类欧美日韩国产在线| 欧洲精品在线观看| 亚洲欧美日韩国产中文在线| 国产高清成人在线| 久久久久国产免费免费| 老司机免费视频一区二区三区| 91福利视频网站| 亚洲免费av网站| 在线亚洲人成电影网站色www| 亚洲欧洲精品一区二区三区不卡| 韩日av一区二区| 精品播放一区二区| 久久99精品国产| 911精品国产一区二区在线| 亚洲一二三四久久| 5月丁香婷婷综合| 奇米在线7777在线精品| 欧美一区二区三区四区视频| 日韩主播视频在线| 久久综合久久99| 99精品视频在线播放观看| 亚洲午夜激情av| 91精品国产一区二区人妖| 久久99精品视频| 国产精品美女久久久久久久久久久 | 国产午夜一区二区三区| 色综合咪咪久久| 日韩电影在线看| 国产精品欧美一级免费| 欧美日韩一区高清| 国产一区二区按摩在线观看| 亚洲老司机在线| 日韩欧美的一区| 99久久国产综合色|国产精品| 亚洲精选在线视频| 久久久高清一区二区三区| 色婷婷综合五月| 国产999精品久久久久久绿帽| 亚洲电影一级片| 国产欧美一二三区| 亚洲精品在线三区| 欧美综合一区二区| 成人av中文字幕| 狠狠色丁香久久婷婷综| 日韩成人免费看| 亚洲精品日韩一| 亚洲另类中文字| 国产精品免费aⅴ片在线观看| 欧美精品v日韩精品v韩国精品v| 成人性生交大片免费| 日韩成人免费在线| 日韩vs国产vs欧美| 免费在线观看日韩欧美| 日韩av在线免费观看不卡| 久久丝袜美腿综合| 久久伊人蜜桃av一区二区| 久久蜜臀中文字幕| 日本一区二区成人| 亚洲免费av在线| 性欧美疯狂xxxxbbbb| 免费高清成人在线| 国产一区二三区| 成人午夜精品一区二区三区| 国产suv精品一区二区6| 99综合电影在线视频| 99免费精品在线观看| 91久久久免费一区二区| 欧美日韩国产高清一区| 日韩精品一区二区三区视频播放 | 免费在线看成人av| 国产麻豆精品久久一二三| 成人久久视频在线观看| 91福利精品第一导航| 欧美精品在线视频| 中文一区一区三区高中清不卡| 亚洲欧美日韩电影| 蜜桃av一区二区在线观看| 99精品欧美一区二区三区小说| 91精品国产综合久久福利| 国产精品女主播av| 激情久久久久久久久久久久久久久久| 成人一区二区三区在线观看| 久久一二三国产| 国产日本一区二区| 久久久久99精品一区| 亚洲精品一区在线观看| 2021中文字幕一区亚洲| 日韩午夜电影在线观看| 国产精品美女久久久久久久网站| 7777精品伊人久久久大香线蕉经典版下载| 在线视频欧美精品| 亚洲国产高清在线观看视频| 蜜臀a∨国产成人精品| 91久久精品日日躁夜夜躁欧美| 久久精品夜夜夜夜久久| 首页综合国产亚洲丝袜| 欧美性生活久久| 亚洲男人天堂一区| 91丨九色porny丨蝌蚪| 欧美极品xxx| 国产成人精品网址| 久久精品夜夜夜夜久久| 麻豆freexxxx性91精品| 99在线精品免费| 国产精品无遮挡| 成人av小说网| 欧美一区二区三区精品| 国产婷婷色一区二区三区在线| 综合亚洲深深色噜噜狠狠网站| 国产精品夜夜爽| 国产精品久99| 欧美午夜片在线观看| 国产成人自拍在线| 中文字幕视频一区| 91福利小视频| 精品一区二区三区视频在线观看 | 99久久国产综合色|国产精品| 久久嫩草精品久久久精品| 99国产精品视频免费观看| 五月天一区二区三区| 国产日韩v精品一区二区| 91蝌蚪porny| 国产精品一级黄| 亚洲国产精品一区二区www| 日韩一区二区三区三四区视频在线观看 | 污片在线观看一区二区| 欧美激情一区在线观看| 欧美精品久久久久久久多人混战 | 精品免费国产二区三区| 在线观看国产一区二区| 国产91丝袜在线观看| 丝袜美腿亚洲综合| 一区二区视频在线看| 国产欧美精品国产国产专区| 宅男噜噜噜66一区二区66| 成人免费视频播放| 麻豆精品国产91久久久久久| 亚洲一二三四区不卡| 亚洲精品视频免费观看| 国产精品第五页| 欧美国产日韩一二三区| 国产亚洲欧美日韩在线一区| 精品日韩欧美在线| www欧美成人18+| 国产日韩v精品一区二区| 久久久综合激的五月天| 久久女同精品一区二区| 久久噜噜亚洲综合| 中文字幕一区在线观看视频| 国产视频一区不卡| 综合色天天鬼久久鬼色| 亚洲精品国产一区二区精华液| 亚洲天堂2014| 日韩和的一区二区| 激情综合五月婷婷| av一二三不卡影片| 欧美日韩小视频| 久久亚洲精品小早川怜子| 久久精品一二三| 亚洲午夜久久久久中文字幕久| 免费在线观看一区| 97国产一区二区| 精品美女一区二区| 中文字幕亚洲成人| 国产一区二区剧情av在线| 色香蕉久久蜜桃| 26uuu久久综合| 亚洲国产人成综合网站|