亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? faq.html

?? libsvm支持向量機(Support Vector Machine,簡稱SVM)。
?? HTML
?? 第 1 頁 / 共 4 頁
字號:
<html>
<head>
<title>LIBSVM FAQ</title>
</head>
<body bgcolor="#ffffcc">

<a name="_TOP"><b><h1><a
href=http://www.csie.ntu.edu.tw/~cjlin/libsvm>LIBSVM</a>  FAQ </h1></b></a>
<b>last modified : </b>
Wed,  8 Feb 2006 08:31:04 GMT
<class="categories">
<li><a
href="#_TOP">All Questions</a>(54)</li>
<ul><b>
<li><a
href="#/Q1:_Some_courses_which_have_used_libsvm_as_a_tool">Q1:_Some_courses_which_have_used_libsvm_as_a_tool</a>(1)</li>
<li><a
href="#/Q2:_Installation_and_running_the_program">Q2:_Installation_and_running_the_program</a>(8)</li>
<li><a
href="#/Q3:_Data_preparation">Q3:_Data_preparation</a>(3)</li>
<li><a
href="#/Q4:_Training_and_prediction">Q4:_Training_and_prediction</a>(30)</li>
<li><a
href="#/Q5:_Graphic_Interface">Q5:_Graphic_Interface</a>(3)</li>
<li><a
href="#/Q6:_Java_version_of_libsvm">Q6:_Java_version_of_libsvm</a>(4)</li>
<li><a
href="#/Q7:_Python_Interface">Q7:_Python_Interface</a>(4)</li>
<li><a
href="#/Q8:_MATLAB_Interface">Q8:_MATLAB_Interface</a>(1)</li>
</b></ul>
</li>

<ul><ul class="headlines">
<li class="headlines_item"><a href="#faq1">Some courses which have used libsvm as a tool</a></li>
<li class="headlines_item"><a href="#f201">Where can I find documents of libsvm ?</a></li>
<li class="headlines_item"><a href="#f202">What are changes in previous versions?</a></li>
<li class="headlines_item"><a href="#f203">I would like to cite libsvm. Which paper should I cite ?   </a></li>
<li class="headlines_item"><a href="#f204">I would like to use libsvm in my software. Is there any license problem?</a></li>
<li class="headlines_item"><a href="#f205">Is there a repository of additional tools based on libsvm?</a></li>
<li class="headlines_item"><a href="#f206">On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </a></li>
<li class="headlines_item"><a href="#f207">I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</a></li>
<li class="headlines_item"><a href="#f208">I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </a></li>
<li class="headlines_item"><a href="#f301">Why sometimes not all attributes of a data appear in the training/model files ?</a></li>
<li class="headlines_item"><a href="#f302">What if my data are non-numerical ?</a></li>
<li class="headlines_item"><a href="#f303">Why do you consider sparse format ? Will the training of dense data be much slower ?</a></li>
<li class="headlines_item"><a href="#f401">The output of training C-SVM is like the following. What do they mean?</a></li>
<li class="headlines_item"><a href="#f402">Can you explain more about the model file?</a></li>
<li class="headlines_item"><a href="#f403">Should I use float or double to store numbers in the cache ?</a></li>
<li class="headlines_item"><a href="#f404">How do I choose the kernel?</a></li>
<li class="headlines_item"><a href="#f405">Does libsvm have special treatments for linear SVM?</a></li>
<li class="headlines_item"><a href="#f406">The number of free support vectors is large. What should I do?</a></li>
<li class="headlines_item"><a href="#f407">Should I scale training and testing data in a similar way?</a></li>
<li class="headlines_item"><a href="#f408">Does it make a big difference  if I scale each attribute to [0,1] instead of [-1,1]?</a></li>
<li class="headlines_item"><a href="#f409">The prediction rate is low. How could I improve it?</a></li>
<li class="headlines_item"><a href="#f410">My data are unbalanced. Could libsvm handle such problems?</a></li>
<li class="headlines_item"><a href="#f411">What is the difference between nu-SVC and C-SVC?</a></li>
<li class="headlines_item"><a href="#f412">The program keeps running without showing any output. What should I do?</a></li>
<li class="headlines_item"><a href="#f413">The program keeps running (with output, i.e. many dots). What should I do?</a></li>
<li class="headlines_item"><a href="#f414">The training time is too long. What should I do?</a></li>
<li class="headlines_item"><a href="#f415">How do I get the decision value(s)?</a></li>
<li class="headlines_item"><a href="#f4151">How do I get the distance between a point and the hyperplane?</a></li>
<li class="headlines_item"><a href="#f416">For some problem sets if I use a large cache (i.e. large -m) on a linux machine, why sometimes I get "segmentation fault ?"</a></li>
<li class="headlines_item"><a href="#f417">How do I disable screen output of svm-train and svm-predict ?</a></li>
<li class="headlines_item"><a href="#f418">I would like to use my own kernel but find out that there are two subroutines for kernel evaluations: k_function() and kernel_function(). Which one should I modify ?</a></li>
<li class="headlines_item"><a href="#f419">What method does libsvm use for multi-class SVM ? Why don't you use the "1-against-the rest" method ?</a></li>
<li class="headlines_item"><a href="#f420">After doing cross validation, why there is no model file outputted ?</a></li>
<li class="headlines_item"><a href="#f421">I would like to try different random partition for cross validation, how could I do it ?</a></li>
<li class="headlines_item"><a href="#f422">I would like to solve L2-SVM (i.e., error term is quadratic). How should I modify the code ?</a></li>
<li class="headlines_item"><a href="#f424">How do I choose parameters for one-class svm as training data are in only one class?</a></li>
<li class="headlines_item"><a href="#f425">Why training a probability model (i.e., -b 1) takes longer time</a></li>
<li class="headlines_item"><a href="#f426">Why using the -b option does not give me better accuracy?</a></li>
<li class="headlines_item"><a href="#f427">Why the code gives NaN (not a number) results?</a></li>
<li class="headlines_item"><a href="#f428">Why on windows sometimes grid.py fails?</a></li>
<li class="headlines_item"><a href="#f429">Why grid.py/easy.py sometimes generates the following warning message?</a></li>
<li class="headlines_item"><a href="#f430">Is there a way to speed up the pow() function used in calculating polynomial kernels?</a></li>
<li class="headlines_item"><a href="#f501">How can I save images drawn by svm-toy?</a></li>
<li class="headlines_item"><a href="#f502">I press the "load" button to load data points but why svm-toy does not draw them ?</a></li>
<li class="headlines_item"><a href="#f503">I would like svm-toy to handle more than three classes of data, what should I do ?</a></li>
<li class="headlines_item"><a href="#f601">What is the difference between Java version and C++ version of libsvm?</a></li>
<li class="headlines_item"><a href="#f602">Is the Java version significantly slower than the C++ version?</a></li>
<li class="headlines_item"><a href="#f603">While training I get the following error message: java.lang.OutOfMemoryError. What is wrong?</a></li>
<li class="headlines_item"><a href="#f604">Why you have the main source file svm.m4 and then transform it to svm.java?</a></li>
<li class="headlines_item"><a href="#f702">On MS windows, why does python fail to load the dll file?</a></li>
<li class="headlines_item"><a href="#f703">How to modify the python interface on MS windows and rebuild the dll file ?</a></li>
<li class="headlines_item"><a href="#f704">Except the python-C++ interface provided, could I use Jython to call libsvm ?</a></li>
<li class="headlines_item"><a href="#f705">How could I install the python interface on Mac OS? </a></li>
<li class="headlines_item"><a href="#f801">I compile the MATLAB interface without problem, but why errors</a></li>
</ul></ul>


<hr size="5" noshade />
<p/>
  
<a name="/Q1:_Some_courses_which_have_used_libsvm_as_a_tool"></a>
<a name="faq1"><b>Q: Some courses which have used libsvm as a tool</b></a>
<br/>                                                                                
<ul>
<li><a href=http://lmb.informatik.uni-freiburg.de/lectures/svm_seminar/>Institute for Computer Science,           
Faculty of Applied Science, University of Freiburg, Germany 
</a>
<li> <a href=http://www.cs.vu.nl/~elena/ml.html>
Division of Mathematics and Computer Science. 
Faculteit der Exacte Wetenschappen 
Vrije Universiteit, The Netherlands. </a>
<li>
<a href=http://www.cae.wisc.edu/~ece539/matlab/>
Electrical and Computer Engineering Department, 
University of Wisconsin-Madison 
</a>
<li>
<a href=http://www.hpl.hp.com/personal/Carl_Staelin/cs236601/project.html>
Technion (Israel Institute of Technology), Israel.
<li>
<a href=http://www.cise.ufl.edu/~fu/learn.html>
Computer and Information Sciences Dept., University of Florida</a>
<li>
<a href=http://www.uonbi.ac.ke/acad_depts/ics/course_material/machine_learning/ML_and_DM_Resources.html>
The Institute of Computer Science,
University of Nairobi, Kenya.</a>
<li>
<a href=http://cerium.raunvis.hi.is/~tpr/courseware/svm/hugbunadur.html>
Applied Mathematics and Computer Science, University of Iceland.
<li>
<a href=http://chicago05.mlss.cc/tiki/tiki-read_article.php?articleId=2>
SVM tutorial in machine learning
summer school, University of Chicago, 2005.
</a>
</ul>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f201"><b>Q: Where can I find documents of libsvm ?</b></a>
<br/>                                                                                
<p>
In the package there is a README file which 
details all options, data format, and library calls.
The model selection tool and the python interface
have a separate README under the directory python.
The guide
<A HREF="http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf">
A practical guide to support vector classification
</A> shows beginners how to train/test their data.
The paper <a href="http://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf">LIBSVM
: a library for support vector machines</a> discusses the implementation of
libsvm in detail.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f202"><b>Q: What are changes in previous versions?</b></a>
<br/>                                                                                
<p>See <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/log">the change log</a>.

<p> You can download earlier versions 
<a href="http://www.csie.ntu.edu.tw/~cjlin/libsvm/oldfiles">here</a>.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f203"><b>Q: I would like to cite libsvm. Which paper should I cite ?   </b></a>
<br/>                                                                                
<p>
Please cite the following document:
<p>
Chih-Chung Chang and Chih-Jen Lin, LIBSVM
: a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
<p>
The bibtex format is as follows
<pre>
@Manual{CC01a,
  author =	 {Chih-Chung Chang and Chih-Jen Lin},
  title =	 {{LIBSVM}: a library for support vector machines},
  year =	 {2001},
  note =	 {Software available at \url{http://www.csie.ntu.edu.tw/~cjlin/libsvm}}
}
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f204"><b>Q: I would like to use libsvm in my software. Is there any license problem?</b></a>
<br/>                                                                                
<p>
The libsvm license ("the modified BSD license")
is compatible with many
free software licenses such as GPL. Hence, it is very easy to
use libsvm in your software.
It can also be used in commercial products.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f205"><b>Q: Is there a repository of additional tools based on libsvm?</b></a>
<br/>                                                                                
<p>
Yes, see <a href="http://www.csie.ntu.edu.tw/~cjlin/libsvmtools">libsvm 
tools</a>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f206"><b>Q: On unix machines, I got "error in loading shared libraries" or "cannot open shared object file." What happened ? </b></a>
<br/>                                                                                

<p>
This usually happens if you compile the code
on one machine and run it on another which has incompatible
libraries.
Try to recompile the program on that machine or use static linking.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f207"><b>Q: I have modified the source and would like to build the graphic interface "svm-toy" on MS windows. How should I do it ?</b></a>
<br/>                                                                                

<p>
Build it as a project by choosing "Win32 Project."
On the other hand, for "svm-train" and "svm-predict"
you want to choose "Win32 Console Project."
After libsvm 2.5, you can also use the file Makefile.win.
See details in README.


<p>
If you are not using Makefile.win and see the following 
link error
<pre>
LIBCMTD.lib(wwincrt0.obj) : error LNK2001: unresolved external symbol
_wWinMain@16
</pre>
you may have selected a wrong project type.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q2:_Installation_and_running_the_program"></a>
<a name="f208"><b>Q: I am an MS windows user but why only one (SVM_toy) of those precompiled .exe actually runs ?  </b></a>
<br/>                                                                                

<p>
You need to open a command window 
and type  svmtrain.exe to see all options.
Some examples are in README file.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f301"><b>Q: Why sometimes not all attributes of a data appear in the training/model files ?</b></a>
<br/>                                                                                
<p>
libsvm uses the so called "sparse" format where zero
values do not need to be stored. Hence a data with attributes
<pre>
1 0 2 0
</pre>
is represented as
<pre>
1:1 3:2
</pre>
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f302"><b>Q: What if my data are non-numerical ?</b></a>
<br/>                                                                                
<p>
Currently libsvm supports only numerical data.
You may have to change non-numerical data to 
numerical. For example, you can use several
binary attributes to represent a categorical
attribute.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q3:_Data_preparation"></a>
<a name="f303"><b>Q: Why do you consider sparse format ? Will the training of dense data be much slower ?</b></a>
<br/>                                                                                
<p>
This is a controversial issue. The kernel
evaluation (i.e. inner product) of sparse vectors is slower 
so the total training time can be at least twice or three times
of that using the dense format.
However, we cannot support only dense format as then we CANNOT
handle extremely sparse cases. Simplicity of the code is another
concern. Right now we decide to support
the sparse format only.
<p align="right">
<a href="#_TOP">[Go Top]</a>  
<hr/>
  <a name="/Q4:_Training_and_prediction"></a>
<a name="f401"><b>Q: The output of training C-SVM is like the following. What do they mean?</b></a>
<br/>                                                                                
<br>optimization finished, #iter = 219
<br>nu = 0.431030
<br>obj = -100.877286, rho = 0.424632
<br>nSV = 132, nBSV = 107
<br>Total nSV = 132

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲成人tv网| 欧美美女网站色| 国产精品一区二区黑丝| 激情综合网最新| 久久99精品国产91久久来源| 蜜乳av一区二区| 久久精品国产77777蜜臀| 久久av资源网| 国产经典欧美精品| 成人久久视频在线观看| 成人性生交大片免费看中文 | 久久99久久99精品免视看婷婷 | 国产精品一区专区| 波多野结衣在线一区| 99热国产精品| 欧美在线观看视频一区二区三区| 欧美亚洲高清一区二区三区不卡| 欧美日韩一本到| 日韩天堂在线观看| 国产亚洲成aⅴ人片在线观看 | 亚洲aaa精品| 裸体一区二区三区| 国产福利一区二区三区视频| 国产夫妻精品视频| 色综合久久久久久久久久久| 欧美日韩成人在线| 欧美精品一区二区三区视频| 中文成人av在线| 亚洲国产精品久久人人爱| 日韩av电影免费观看高清完整版 | 欧美大片在线观看| 国产午夜亚洲精品理论片色戒| 中文字幕在线观看不卡| 亚洲成人tv网| 国产91精品一区二区麻豆亚洲| 99久久99久久精品国产片果冻| 欧美性猛交xxxxxxxx| 日韩欧美电影一二三| 日本一区二区三区四区| 一区二区理论电影在线观看| 久久国产欧美日韩精品| aaa国产一区| 在线播放视频一区| 亚洲国产成人一区二区三区| 亚洲成人免费视| 国产一区美女在线| 色婷婷久久99综合精品jk白丝| 91精品国产综合久久久蜜臀图片| 欧美高清在线精品一区| 天天影视网天天综合色在线播放| 国产超碰在线一区| 欧美群妇大交群的观看方式| 国产亚洲欧美一区在线观看| 亚洲一区二区三区四区的| 国产一区二区电影| 欧美日韩激情一区| 国产精品传媒在线| 国产真实精品久久二三区| 色婷婷精品久久二区二区蜜臂av| 久久麻豆一区二区| 亚洲成人动漫精品| 成人免费高清在线| 日韩精品一区二区三区四区视频| 国产精品无遮挡| 久久成人18免费观看| 在线视频综合导航| 国产精品美女久久久久久| 日韩精品久久理论片| 97se亚洲国产综合在线| 精品伦理精品一区| 天天综合网 天天综合色| 99v久久综合狠狠综合久久| 精品日本一线二线三线不卡| 国产呦精品一区二区三区网站| 欧美日韩大陆一区二区| 综合久久给合久久狠狠狠97色| 精品综合久久久久久8888| 欧美午夜电影一区| 国产精品久久久久久久久免费樱桃| 青青草91视频| 欧美日韩精品久久久| 亚洲视频香蕉人妖| 国产欧美1区2区3区| 免费成人av资源网| 欧美日韩午夜在线| 亚洲精品一二三| caoporn国产一区二区| 国产清纯白嫩初高生在线观看91 | 亚洲女厕所小便bbb| 国产高清成人在线| 久久综合久久综合久久综合| 免费欧美高清视频| 7777精品伊人久久久大香线蕉 | 精品一区二区综合| 91精品久久久久久蜜臀| 亚洲va韩国va欧美va精品 | 国产色婷婷亚洲99精品小说| 美女被吸乳得到大胸91| 欧美一区二区三区爱爱| 午夜伦欧美伦电影理论片| 欧美怡红院视频| 亚洲在线观看免费| 欧美三级日韩三级国产三级| 一区二区久久久久久| 欧美性xxxxxx少妇| 性久久久久久久| 欧美男同性恋视频网站| 日韩精品亚洲一区二区三区免费| 欧美精品第1页| 日韩影院精彩在线| 日韩欧美国产麻豆| 狠狠色丁香婷综合久久| 久久精品一级爱片| 日韩欧美精品三级| 国产一区二区精品久久99| 久久精品夜色噜噜亚洲a∨| 国产高清亚洲一区| 1024国产精品| 在线精品视频免费观看| 日韩中文字幕区一区有砖一区| 日韩一级大片在线观看| 久久99久久精品欧美| 国产午夜精品理论片a级大结局| 懂色av中文一区二区三区| 国产精品色眯眯| 色妞www精品视频| 婷婷久久综合九色综合绿巨人| 91精品国产aⅴ一区二区| 久久疯狂做爰流白浆xx| 国产欧美日韩久久| 色菇凉天天综合网| 日韩一区精品视频| 国产午夜精品久久久久久免费视 | 国产一区二区三区高清播放| 国产日韩精品一区| 在线观看亚洲a| 久久99热99| 亚洲色图视频网| 91精品国产综合久久久久久久久久 | 亚洲va欧美va人人爽午夜| 精品国产乱子伦一区| 成人av免费在线| 日本午夜精品一区二区三区电影 | 日本vs亚洲vs韩国一区三区二区| 精品国产免费视频| 91亚洲精品久久久蜜桃网站| 日韩电影在线看| 国产精品色呦呦| 欧美一区二区三区免费观看视频 | 久久综合色播五月| 色综合久久久久网| 精品在线观看免费| 亚洲理论在线观看| 欧美成人福利视频| 一本一道久久a久久精品 | 91精品黄色片免费大全| 成人激情黄色小说| 热久久国产精品| 国产精品电影一区二区三区| 日韩一区二区在线看片| 91啪亚洲精品| 国产成人av网站| 午夜精品久久久久久久蜜桃app| 国产精品视频线看| 日韩欧美一区二区在线视频| 91色视频在线| 国产成人自拍网| 日韩黄色小视频| 亚洲三级免费电影| 国产午夜精品一区二区三区嫩草| 欧美精品黑人性xxxx| 91社区在线播放| 国产乱妇无码大片在线观看| 午夜私人影院久久久久| 中文字幕在线一区免费| 欧美精品一区二区三区在线播放| 中文字幕日韩av资源站| 精品久久国产字幕高潮| 欧美日韩免费一区二区三区 | 91麻豆国产自产在线观看| 久久国产视频网| 亚洲成人av一区二区| 国产精品久久久久久久久免费樱桃 | 久久久久久9999| 日韩欧美国产一区二区在线播放| 色呦呦一区二区三区| 不卡电影一区二区三区| 国产成人av电影在线| 久久99精品视频| 久久成人免费网站| 日韩中文字幕一区二区三区| 亚洲国产一区二区a毛片| 亚洲天堂a在线| 亚洲欧洲综合另类在线 | 成人在线综合网站| 国产伦精品一区二区三区免费 | 美腿丝袜在线亚洲一区| 日韩高清欧美激情| 天天亚洲美女在线视频| 一区二区三区四区不卡在线|